Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2020; 97: 431-444

SARS, снова SARS и MERS. Обзор животных моделей респираторных синдромов человека, вызываемых коронавирусными инфекциями

Нагорных Алексей Михайлович, Тюменцев Александр Игоревич, Тюменцева Марина Алексеевна, Акимкин Василий Геннадиевич

https://doi.org/10.36233/0372-9311-2020-97-5-6

Аннотация

Крупные вспышки респираторных синдромов человека, вызываемых коронавирусными инфекциями, с начала ХХI в. стали причиной гибели более миллиона человек на планете. Несмотря на то что первая волна коронавирусной инфекции случилась еще в 2002 г, до сегодняшнего дня не существует ни од¬ной адекватной животной модели, одновременно удовлетворяющей потребности научного сообщества в воспроизведении патогенеза, клинических проявлений, иммуногенности, разработке и испытании средств специфической профилактики и терапии тяжелого острого респираторного синдрома, ближневосточного респираторного синдрома и коронавирусного заболевания 2019 г. (COVID-19).

Цель работы — представить актуальную информацию по известным животным моделям респираторных синдромов человека, вызываемых коронавирусными инфекциями, и акцентировать внимание читателя на их адекватности, заключающейся в максимально точной имитации клинических признаков и патоморфологических изменений.

Список литературы

1. Cherry J.D. The chronology of the 2002-2003 SARS mini pan-demic. Paediatr. Respir. Rev. 2004; 5(4): 262-9. https://doi.org/10.1016/j.prrv.2004.07.009

2. Li K., Wohlford-Lenane C.L., Channappanavar R., Park J.E., Earnest J.T., Bair T.B., et al. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc. Natl. Acad. Sci. USA. 2017; 114(15): E3119-28. https://doi.org/10.1073/pnas.1619109114

3. Ye Z.W., Yuan S., Yuen K.S., Fung S.Y., Chan C.P., Jin D.Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 2020; 16(10): 1686-97. https://doi.org/10.7150/ijbs.45472

4. Decaro N., Martella V, Saif L.J., Buonavoglia C. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res. Vet. Sci. 2020; 131: 21-3. https://doi.org/10.1016/j.rvsc.2020.04.009

5. Wan Y, Shang J., Graham R., Baric R.S., Li F. Receptor recog-nition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Viro-logy. 2020; 94(7): e00127-20. https://doi.org/10.1128/jvi.00127-20

6. Baseler L., de Wit E., Feldmann H. A comparative review of animal models of Middle East respiratory syndrome coronavirus infection. Vet. Pathol. 2016; 53(3): 521-31. https://doi.org/10.1177/0300985815620845

7. Li W., Zhang C., Sui J., Kuhn J.H., Moore M.J., Luo S., et al. Receptor and viral determinants of SARS-coronavirus adapta¬tion to human ACE2. EMBO J. 2005; 24(8): 1634-43. https://doi.org/10.1038/sj.emboj.7600640

8. Wentworth D.E., Gillim-Ross L., Espina N., Bernard K.A. Mice susceptible to SARS coronavirus. Emerg. Infect. Dis. 2004; 10(7): 1293-6. https://doi.org/10.3201/eid1007.031119

9. Roberts A., Paddock C., Vogel L., Butler E., Zaki S., Subbarao K. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J. Vi¬rol. 2005; 79(9): 5833-8. https://doi.org/10.1128/JVI.79.9.5833-5838.2005

10. McCray P., Pewe L., Wohlford-Lenane C., Hickey M., Manzel L., Shi L., et al. Lethal infection of K18-hACE2 mice infect¬ed with severe acute respiratory syndrome coronavirus. J. Virol. 2006; 81(2): 813-21. https://doi.org/10.1128/JVI.02012-06

11. Tseng C., Huang C., Newman P., Wang N., Narayanan K., Watts D., et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-convert-ing enzyme 2 virus receptor. J. Virol. 2006; 81(3): 1162-73. https://doi.org/10.1128/JVI.01702-06

12. Schaecher S.R., Stabenow J., Oberle C., Schriewer J., Buller R.M., Sagartz J.E., et al. An immunosuppressed Syrian gol¬den hamster model for SARS-CoV infection. Virology. 2008; 380(2): 312-21. https://doi.org/10.1016/j.virol.2008.07.026

13. Martina B.E., Haagmans B.L., Kuiken T., Fouchier R.A., Rimmelzwaan G.F., van Amerongen G., et al. SARS virus infection of cats and ferrets. Nature. 2003; 425(6961): 915. https://doi.org/10.1038/425915a

14. ter Meulen J., Bakker A.B., van den Brink E.N., Weverling G.J., Martina B.E., Haagmans B.L., et al. Human monoclonal anti-body as prophylaxis for SARS coronavirus infection in ferrets. Lancet. 2004; 363(9427): 2139-41. https://doi.org/10.1016/S0140-6736(04)16506-9

15. McAuliffe J., Vogel L., Roberts A., Fahle G., Fischer S., Shieh W.J., et al. Replication of SARS coronavirus adminis¬tered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology. 2004; 330(1): 8-15. https://doi.org/10.1016/j.virol.2004.09.030

16. Lawler JV, Endy T.P., Hensley L.E., Garrison A., Fritz E.A., Lesar M., et al. Cynomolgus macaque as an animal model for se¬vere acute respiratory syndrome. PLoS Med. 2006; 3(5): e149. https://doi.org/10.1371/journal.pmed.0030149

17. van Doremalen N., Miazgowicz K., Milne-Price S., Bushmaker T., Robertson S., Scott D., et al. Host species restriction of middle east respiratory syndrome coronavirus through its re-ceptor, dipeptidyl peptidase 4. J. Virol. 2014; 88(16): 9220-32. https://doi.org/10.1128/JVI.00676-14

18. Raj V.S., Smits S.L., Provacia L.B., van den Brand J.M., Wiersma L., Ouwendijk W.J., et al. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the middle east respiratory syndrome coronavirus. J. Virol. 2013; 88(3): 1834-8. https://doi.org/10.1128/JVI.02935-13

19. Coleman C.M., Matthews K.L., Goicochea L., Frieman M.B. Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus. J. Gen. Virol. 2014; 95(Pt. 2): 408-12. https://doi.org/10.1099/vir0.060640-0

20. Zhao J., Li K., Wohlford-Lenane C., Agnihothram S.S., Fett C., Zhao J., et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc. Natl. Acad. Sci. USA. 2014; 111(13): 4970-5. https://doi.org/10.1073/pnas.1323279111

21. Cockrell A.S., Peck K.M., Yount B.L., Agnihothram S.S., Scobey T., Curnes N.R., et al. Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection. J. Virol. 2014; 88(9): 5195-9. https://doi.org/10.1128/JVI.03764-13

22. Cockrell A.S., Yount B., Scobey T., Jensen K., Douglas M., Beall A., et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat. Microbiol. 2016; 2(2): 16226. https://doi.org/10.1038/nmicrobiol.2016.226

23. Agrawal A.S., Garron T., Tao X., Peng B.H., Wakamiya M., Chan T.S., et al. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J. Virol. 2015; 89(7): 3659-70. https://doi.org/10.1128/JVI.03427-14

24. Tao X., Garron T., Agrawal A.S., Algaissi A., Peng B.H., Waka¬miya M., et al. Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease. J. Virol. 2015; 90(1): 57-67. https://doi.org/10.1128/JVI.02009-15

25. Enkirch T., von Messling V Ferret models of viral pathogenesis. Virology. 2015; 479-480: 259-70. https://doi.org/10.1016/j.virol.2015.03.017

26. Wong J., Layton D., Wheatley A.K., Kent S.J. Improving im-munological insights into the ferret model of human viral in-fectious disease. Influenza Other Respir. Viruses. 2019; 13(6): 535-46. https://doi.org/10.1111/irv.12687

27. Munster V.J., de Wit E., Feldmann H. Pneumonia from hu¬man coronavirus in a macaque model. N. Engl. J. Med. 2013; 368(16): 1560-2. https://doi.org/10.1056/NEJMc1215691

28. de Wit E., Rasmussen A.L., Falzarano D., Bushmaker T., Feld-mann F., Brining D.L., et al. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc. Natl. Acad. Sci. USA. 2013; 110(41): 16598-603. https://doi.org/10.1073/pnas.1310744110

29. Yao Y., Bao L., Deng W., Xu L., Li F., Lv Q., et al. An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus. J. Infect. Dis. 2013; 209(2): 236-42. https://doi.org/10.1093/infdis/jit590

30. Falzarano D., de Wit E., Feldmann F., Rasmussen A.L., Okumura A., Peng X., et al. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathogens. 2014; 10(8): e1004250. https://doi.org/10.1371/journal.ppat.1004250

31. Sun SH, Chen Q., Gu H.J., Yang G., Wang Y.X., Huang X.Y., et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe. 2020; 28(1): 124-133.e4. https://doi.org/10.1016/j.chom.2020.05.020

32. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565-74. https://doi.org/10.1016/S0140-6736(20)30251-8

33. Bao L., Deng W., Huang B., Gao H., Liu J., Ren L., et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Na-ture. 2020; 583(7818): 830-3. https://doi.org/10.1038/s41586-020-2312-y

34. Hassan AO, Case J.B., Winkler E.S., Thackray L.B., Kafai N.M., Bailey A.L., et al. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell. 2020; 182(3): 744-53.e4. https://doi.org/10.1016/j.cell.2020.06.011

35. Israelow B., Song E., Mao T., Lu P., Meir A., Liu F., et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I in¬terferon signaling. J. Exp. Med. 2020; 217(12): e20201241. https://doi.org/10.1101/2020.05.27.118893

36. Ng S.C., Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020; 69(6): 973-4. https://doi.org/10.1136/gutjnl-2020-321195

37. Xu Y, Li X., Zhu B., Liang H., Fang C., Gong Y, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evi-dence for persistent fecal viral shedding. Nat. Med. 2020; 26(4): 502-5. https://doi.org/10.1038/s41591-020-0817-4

38. Sia S.F., Yan L.M., Chin A.W.H., Fung K., Choy K.T., Wong A.Y.L., et al. Pathogenesis and transmission of SARSCoV-2 in golden hamsters. Nature. 2020; 583(7818): 834-8. https://doi.org/10.1038/s41586-020-2342-5

39. Chan J.F., Zhang A.J., Yuan S., Poon V.K., Chan C.C., Lee A.C., et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 2020; ciaa325. https://doi.org/10.1093/cid/ciaa325

40. Lau S.Y, Wang P., Mok B.W., Zhang A.J., Chu H., Lee A.C., et al. Attenuated SARS-COV-2 variants with deletions at the S1/S2 junction. Emerg. Microbes Infect. 2020; 9(1): 837-42. https://doi.org/10.1080/22221751.2020.1756700

41. Imai M., Iwatsuki-Horimoto K., Hatta M., Loeber S., Halfmann P. J., Nakajima N., et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure deve-lopment. Proc. Natl. Acad. Sci. USA. 2020; 117(28): 16587-95. https://doi.org/10.1073/pnas.2009799117

42. Rogers T.F., Zhao F., Huang D., Beutler N., Burns A., He W.T., et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020; 369(6506): 956-63. https://doi.org/10.1126/science.abc7520

43. Shi J., Wen Z., Zhong G., Yang H., Wang C., Huang B., et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020; 368(6494): 1016-20. https://doi.org/10.1126/science.abb7015

44. Kim Y.I., Kim S.G., Kim S.M., Kim E.H., Park S.J., Yu K.M., et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020; 27(5): 704-9.e2. https://doi.org/10.1016/j.chom.2020.03.023

45. Park S.J., Yu K.M., Kim Y.I., Kim S.M., Kim E.H., Kim S.G., et al. Antiviral efficacies of FDA-approved drugs against SARSCoV-2 infection in ferrets. mBio. 2020; 11(3): e01114-20. https://doi.org/10.1128/mBio.01114-20

46. Melin A.D., Janiak M.C., Marrone F., Arora P.S., Higham J.P. Comparative ACE2 variation and primate COVID-19 risk. bioRxiv. 2020; 2020.04.09.034967. Preprint. https://doi.org/10.1101/2020.04.09.034967

47. Singh D.K., Ganatra S.R., Singh B., Cole J., Alfson K.J., Clem-mons E., et al. SARS-CoV-2 infection leads to acute infection with dynamic cellular and inflammatory flux in the lung that varies across nonhuman primate species. bioRxiv. 2020. https://doi.org/10.1101/2020.06.05.136481

48. Rockx B., Kuiken T., Herfst S., Bestebroer T., Lamers M.M., Oude Munnink B., et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020; 368(6494): 1012-5. https://doi.org/10.1126/science.abb7314

49. Lu S., Zhao Y., Yu W., Yang Y, Gao J., Wang J., et al. Comparison of SARS-CoV-2 infections among 3 species of non-human primates. bioRxiv. 2020. https://doi.org/10.1101/2020.04.08.031807

50. Bao L., Deng W., Gao H., Xiao C., Liu J., Xue J., et al. Lack of reinfection in rhesus macaques infected with SARS-CoV-2. bioRxiv. 2020. https://doi.org/10.1101/2020.03.13.990226

51. Maisonnasse P., Guedj J., Contreras V, Behillil S., Solas C., Marlin R., et al. Hydroxychloroquine in the treatment and prophylaxis of SARS-CoV-2 infection in non- human primates. Nature. 2020; 585(7826): 584-7. https://doi.org/10.21203/rs.3.rs-27223/v1

Journal of microbiology, epidemiology and immunobiology. 2020; 97: 431-444

SARS, SARS again, and MERS. Review of animal models of human respiratory syndromes caused by coronavirus infections

Nagornykh Aleksey M., Tyumentsev Alexander I., Tyumentseva Marina A., Akimkin Vasily G.

https://doi.org/10.36233/0372-9311-2020-97-5-6

Abstract

Since the beginning of the 21th century, major outbreaks of human respiratory syndromes caused by coronavirus infections have caused more than million deaths on the planet. Despite the fact that the first wave of the coronavirus infection took place back in 2002, even now there is not any adequate animal model that would meet the needs of the scientific community for reproducing the pathogenesis, clinical manifestations, immunogenicity, development and testing of preventive and therapeutic compounds specific to Severe Acute Respiratory Syndrome, Middle East Respiratory Syndrome, and Coronavirus Disease 2019 (COVID-19).

The purpose of the study is to provide relevant information on known animal models of human respiratory syndromes caused by coronavirus infections and to focus the reader's attention on their adequacy, which consists in the most accurate imitation of clinical signs and pathomorphological changes.

References

1. Cherry J.D. The chronology of the 2002-2003 SARS mini pan-demic. Paediatr. Respir. Rev. 2004; 5(4): 262-9. https://doi.org/10.1016/j.prrv.2004.07.009

2. Li K., Wohlford-Lenane C.L., Channappanavar R., Park J.E., Earnest J.T., Bair T.B., et al. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc. Natl. Acad. Sci. USA. 2017; 114(15): E3119-28. https://doi.org/10.1073/pnas.1619109114

3. Ye Z.W., Yuan S., Yuen K.S., Fung S.Y., Chan C.P., Jin D.Y. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci. 2020; 16(10): 1686-97. https://doi.org/10.7150/ijbs.45472

4. Decaro N., Martella V, Saif L.J., Buonavoglia C. COVID-19 from veterinary medicine and one health perspectives: What animal coronaviruses have taught us. Res. Vet. Sci. 2020; 131: 21-3. https://doi.org/10.1016/j.rvsc.2020.04.009

5. Wan Y, Shang J., Graham R., Baric R.S., Li F. Receptor recog-nition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Viro-logy. 2020; 94(7): e00127-20. https://doi.org/10.1128/jvi.00127-20

6. Baseler L., de Wit E., Feldmann H. A comparative review of animal models of Middle East respiratory syndrome coronavirus infection. Vet. Pathol. 2016; 53(3): 521-31. https://doi.org/10.1177/0300985815620845

7. Li W., Zhang C., Sui J., Kuhn J.H., Moore M.J., Luo S., et al. Receptor and viral determinants of SARS-coronavirus adapta¬tion to human ACE2. EMBO J. 2005; 24(8): 1634-43. https://doi.org/10.1038/sj.emboj.7600640

8. Wentworth D.E., Gillim-Ross L., Espina N., Bernard K.A. Mice susceptible to SARS coronavirus. Emerg. Infect. Dis. 2004; 10(7): 1293-6. https://doi.org/10.3201/eid1007.031119

9. Roberts A., Paddock C., Vogel L., Butler E., Zaki S., Subbarao K. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J. Vi¬rol. 2005; 79(9): 5833-8. https://doi.org/10.1128/JVI.79.9.5833-5838.2005

10. McCray P., Pewe L., Wohlford-Lenane C., Hickey M., Manzel L., Shi L., et al. Lethal infection of K18-hACE2 mice infect¬ed with severe acute respiratory syndrome coronavirus. J. Virol. 2006; 81(2): 813-21. https://doi.org/10.1128/JVI.02012-06

11. Tseng C., Huang C., Newman P., Wang N., Narayanan K., Watts D., et al. Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human angiotensin-convert-ing enzyme 2 virus receptor. J. Virol. 2006; 81(3): 1162-73. https://doi.org/10.1128/JVI.01702-06

12. Schaecher S.R., Stabenow J., Oberle C., Schriewer J., Buller R.M., Sagartz J.E., et al. An immunosuppressed Syrian gol¬den hamster model for SARS-CoV infection. Virology. 2008; 380(2): 312-21. https://doi.org/10.1016/j.virol.2008.07.026

13. Martina B.E., Haagmans B.L., Kuiken T., Fouchier R.A., Rimmelzwaan G.F., van Amerongen G., et al. SARS virus infection of cats and ferrets. Nature. 2003; 425(6961): 915. https://doi.org/10.1038/425915a

14. ter Meulen J., Bakker A.B., van den Brink E.N., Weverling G.J., Martina B.E., Haagmans B.L., et al. Human monoclonal anti-body as prophylaxis for SARS coronavirus infection in ferrets. Lancet. 2004; 363(9427): 2139-41. https://doi.org/10.1016/S0140-6736(04)16506-9

15. McAuliffe J., Vogel L., Roberts A., Fahle G., Fischer S., Shieh W.J., et al. Replication of SARS coronavirus adminis¬tered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology. 2004; 330(1): 8-15. https://doi.org/10.1016/j.virol.2004.09.030

16. Lawler JV, Endy T.P., Hensley L.E., Garrison A., Fritz E.A., Lesar M., et al. Cynomolgus macaque as an animal model for se¬vere acute respiratory syndrome. PLoS Med. 2006; 3(5): e149. https://doi.org/10.1371/journal.pmed.0030149

17. van Doremalen N., Miazgowicz K., Milne-Price S., Bushmaker T., Robertson S., Scott D., et al. Host species restriction of middle east respiratory syndrome coronavirus through its re-ceptor, dipeptidyl peptidase 4. J. Virol. 2014; 88(16): 9220-32. https://doi.org/10.1128/JVI.00676-14

18. Raj V.S., Smits S.L., Provacia L.B., van den Brand J.M., Wiersma L., Ouwendijk W.J., et al. Adenosine deaminase acts as a natural antagonist for dipeptidyl peptidase 4-mediated entry of the middle east respiratory syndrome coronavirus. J. Virol. 2013; 88(3): 1834-8. https://doi.org/10.1128/JVI.02935-13

19. Coleman C.M., Matthews K.L., Goicochea L., Frieman M.B. Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus. J. Gen. Virol. 2014; 95(Pt. 2): 408-12. https://doi.org/10.1099/vir0.060640-0

20. Zhao J., Li K., Wohlford-Lenane C., Agnihothram S.S., Fett C., Zhao J., et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc. Natl. Acad. Sci. USA. 2014; 111(13): 4970-5. https://doi.org/10.1073/pnas.1323279111

21. Cockrell A.S., Peck K.M., Yount B.L., Agnihothram S.S., Scobey T., Curnes N.R., et al. Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection. J. Virol. 2014; 88(9): 5195-9. https://doi.org/10.1128/JVI.03764-13

22. Cockrell A.S., Yount B., Scobey T., Jensen K., Douglas M., Beall A., et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat. Microbiol. 2016; 2(2): 16226. https://doi.org/10.1038/nmicrobiol.2016.226

23. Agrawal A.S., Garron T., Tao X., Peng B.H., Wakamiya M., Chan T.S., et al. Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J. Virol. 2015; 89(7): 3659-70. https://doi.org/10.1128/JVI.03427-14

24. Tao X., Garron T., Agrawal A.S., Algaissi A., Peng B.H., Waka¬miya M., et al. Characterization and demonstration of the value of a lethal mouse model of Middle East respiratory syndrome coronavirus infection and disease. J. Virol. 2015; 90(1): 57-67. https://doi.org/10.1128/JVI.02009-15

25. Enkirch T., von Messling V Ferret models of viral pathogenesis. Virology. 2015; 479-480: 259-70. https://doi.org/10.1016/j.virol.2015.03.017

26. Wong J., Layton D., Wheatley A.K., Kent S.J. Improving im-munological insights into the ferret model of human viral in-fectious disease. Influenza Other Respir. Viruses. 2019; 13(6): 535-46. https://doi.org/10.1111/irv.12687

27. Munster V.J., de Wit E., Feldmann H. Pneumonia from hu¬man coronavirus in a macaque model. N. Engl. J. Med. 2013; 368(16): 1560-2. https://doi.org/10.1056/NEJMc1215691

28. de Wit E., Rasmussen A.L., Falzarano D., Bushmaker T., Feld-mann F., Brining D.L., et al. Middle East respiratory syndrome coronavirus (MERS-CoV) causes transient lower respiratory tract infection in rhesus macaques. Proc. Natl. Acad. Sci. USA. 2013; 110(41): 16598-603. https://doi.org/10.1073/pnas.1310744110

29. Yao Y., Bao L., Deng W., Xu L., Li F., Lv Q., et al. An animal model of MERS produced by infection of rhesus macaques with MERS coronavirus. J. Infect. Dis. 2013; 209(2): 236-42. https://doi.org/10.1093/infdis/jit590

30. Falzarano D., de Wit E., Feldmann F., Rasmussen A.L., Okumura A., Peng X., et al. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathogens. 2014; 10(8): e1004250. https://doi.org/10.1371/journal.ppat.1004250

31. Sun SH, Chen Q., Gu H.J., Yang G., Wang Y.X., Huang X.Y., et al. A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe. 2020; 28(1): 124-133.e4. https://doi.org/10.1016/j.chom.2020.05.020

32. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224): 565-74. https://doi.org/10.1016/S0140-6736(20)30251-8

33. Bao L., Deng W., Huang B., Gao H., Liu J., Ren L., et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Na-ture. 2020; 583(7818): 830-3. https://doi.org/10.1038/s41586-020-2312-y

34. Hassan AO, Case J.B., Winkler E.S., Thackray L.B., Kafai N.M., Bailey A.L., et al. A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. Cell. 2020; 182(3): 744-53.e4. https://doi.org/10.1016/j.cell.2020.06.011

35. Israelow B., Song E., Mao T., Lu P., Meir A., Liu F., et al. Mouse model of SARS-CoV-2 reveals inflammatory role of type I in¬terferon signaling. J. Exp. Med. 2020; 217(12): e20201241. https://doi.org/10.1101/2020.05.27.118893

36. Ng S.C., Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020; 69(6): 973-4. https://doi.org/10.1136/gutjnl-2020-321195

37. Xu Y, Li X., Zhu B., Liang H., Fang C., Gong Y, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evi-dence for persistent fecal viral shedding. Nat. Med. 2020; 26(4): 502-5. https://doi.org/10.1038/s41591-020-0817-4

38. Sia S.F., Yan L.M., Chin A.W.H., Fung K., Choy K.T., Wong A.Y.L., et al. Pathogenesis and transmission of SARSCoV-2 in golden hamsters. Nature. 2020; 583(7818): 834-8. https://doi.org/10.1038/s41586-020-2342-5

39. Chan J.F., Zhang A.J., Yuan S., Poon V.K., Chan C.C., Lee A.C., et al. Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 2020; ciaa325. https://doi.org/10.1093/cid/ciaa325

40. Lau S.Y, Wang P., Mok B.W., Zhang A.J., Chu H., Lee A.C., et al. Attenuated SARS-COV-2 variants with deletions at the S1/S2 junction. Emerg. Microbes Infect. 2020; 9(1): 837-42. https://doi.org/10.1080/22221751.2020.1756700

41. Imai M., Iwatsuki-Horimoto K., Hatta M., Loeber S., Halfmann P. J., Nakajima N., et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure deve-lopment. Proc. Natl. Acad. Sci. USA. 2020; 117(28): 16587-95. https://doi.org/10.1073/pnas.2009799117

42. Rogers T.F., Zhao F., Huang D., Beutler N., Burns A., He W.T., et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science. 2020; 369(6506): 956-63. https://doi.org/10.1126/science.abc7520

43. Shi J., Wen Z., Zhong G., Yang H., Wang C., Huang B., et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. 2020; 368(6494): 1016-20. https://doi.org/10.1126/science.abb7015

44. Kim Y.I., Kim S.G., Kim S.M., Kim E.H., Park S.J., Yu K.M., et al. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe. 2020; 27(5): 704-9.e2. https://doi.org/10.1016/j.chom.2020.03.023

45. Park S.J., Yu K.M., Kim Y.I., Kim S.M., Kim E.H., Kim S.G., et al. Antiviral efficacies of FDA-approved drugs against SARSCoV-2 infection in ferrets. mBio. 2020; 11(3): e01114-20. https://doi.org/10.1128/mBio.01114-20

46. Melin A.D., Janiak M.C., Marrone F., Arora P.S., Higham J.P. Comparative ACE2 variation and primate COVID-19 risk. bioRxiv. 2020; 2020.04.09.034967. Preprint. https://doi.org/10.1101/2020.04.09.034967

47. Singh D.K., Ganatra S.R., Singh B., Cole J., Alfson K.J., Clem-mons E., et al. SARS-CoV-2 infection leads to acute infection with dynamic cellular and inflammatory flux in the lung that varies across nonhuman primate species. bioRxiv. 2020. https://doi.org/10.1101/2020.06.05.136481

48. Rockx B., Kuiken T., Herfst S., Bestebroer T., Lamers M.M., Oude Munnink B., et al. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science. 2020; 368(6494): 1012-5. https://doi.org/10.1126/science.abb7314

49. Lu S., Zhao Y., Yu W., Yang Y, Gao J., Wang J., et al. Comparison of SARS-CoV-2 infections among 3 species of non-human primates. bioRxiv. 2020. https://doi.org/10.1101/2020.04.08.031807

50. Bao L., Deng W., Gao H., Xiao C., Liu J., Xue J., et al. Lack of reinfection in rhesus macaques infected with SARS-CoV-2. bioRxiv. 2020. https://doi.org/10.1101/2020.03.13.990226

51. Maisonnasse P., Guedj J., Contreras V, Behillil S., Solas C., Marlin R., et al. Hydroxychloroquine in the treatment and prophylaxis of SARS-CoV-2 infection in non- human primates. Nature. 2020; 585(7826): 584-7. https://doi.org/10.21203/rs.3.rs-27223/v1