Preview

Журнал микробиологии, эпидемиологии и иммунобиологии

Расширенный поиск

РОЛЬ БИОПЛЕНОК В ВЫЖИВАЕМОСТИ И СОХРАНЕНИИ ВИРУЛЕНТНОСТИ ХОЛЕРНЫХ ВИБРИОНОВ В ОКРУЖАЮЩЕЙ СРЕДЕ И ОРГАНИЗМЕ ЧЕЛОВЕКА

https://doi.org/10.36233/0372-9311-2016-3-88-97

Полный текст:

Аннотация

Представлены материалы относительно биопленок холерных вибрионов. Показано, что формирование биопленок является существенным фактором патогенности и одной из основных стратегий, повышающих выживание холерных вибрионов в организме человека и в окружающей среде.

Об авторах

С. В. Титова
Ростовский-на-Дону противочумный институт
Россия


Л. П. Алексеева
Ростовский-на-Дону противочумный институт
Россия


И. Т. Андрусенко
Ростовский-на-Дону противочумный институт
Россия


Список литературы

1. Блинкова Л.П. Перспективы использования бактериоцинов для профилактики и терапии инфекций. Журн. микробиол. 1984, 5: 10-15.

2. Голубев Б.П. Экологические аспекты распространения вибрионов Эльтор в объектах окружающей среды. Автореф. дис. канд. мед. наук. Саратов, 1993.

3. Лахтин В.М., Алешкин В.А., Лахтин М.В. и др. Лектины, адгезины и лектиновые вещества лактобацилл и бифидобактерий. Вестник РАМН. 2006, 1: 28-34.

4. Маркина О.В., Шелохович А.И., Терентьев А.Н. и др. Стабилизированные фазовые варианты Vibrio cholerae El Tor P-18895. В: Холера и патоген, для человека вибрионы. Ростов-на-Дону, Дониздат, 2014, 27: 112-114.

5. Мишанькин Б.Н., Дуванова О.В., Романова Л.В. и др. Мембранный белок ОтрТ холерного вибриона как возможный представитель омптинов семейства Vibrionaceae. Проблемы особо опасных инфекций. 2014, 3: 52-56.

6. Мишанькин Б.Н., ШиманюкН.Я., Водопьянов С.О. идр. Изучение хитинолитического комплекса холерного вибриона сероварианта 0139. Биотехнология. 2010, 1: 32-40.

7. Мишанькин Б.Н., Дуванова О.В., Шипко Е.С. и др. Система активации плазминогена у Vibrio cholerae. Журн. микробиол. 2013, 5: 13-20.

8. Сизова Ю.В., Черепахина И.Я., Балахнова В.В. идр. Вариабельность свойств, характеризующих способность к выживанию холерных вибрионов в биопленочных сообществах. Пробл. особо опасных инф. 2012, 3 (113): 54-57.

9. ШиманюкН.Я., Дуванова, О.В., Сучков И.Ю. идр. Нейраминидаза Vibrio cholerae 0139 «Бенгал»: обнаружение, очистка и некоторые свойства. Биотехнология, 1999, 3: 56-62.

10. Augustine N., Peter A.W., Kerkar S., Thomas S. Arctic actinomycetes as potential inhibitors of Vibrio cholerae biofilm. Curr. Microbiol. 2012, 64 (4): 338-342.

11. Berk V., Fong J.C., Dempsey G.T. et al. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science. 2012, 337 (6091): 236-239.

12. Blokesch M. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ. Microbiol. 2012, 14 (8): 1898-1912.

13. Boyhan S., Beyhan S., Tischler A.D. et al. Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J. Bacteriol. 2006, 188 (10): 3600-3613.

14. Castro-Rosas J., Escartin, E.F. Increased toleranceof Vibrio cholerae 01 to temperature, pH, or dryingassociated with colonization of shrimp carapaces. Int. J. Food Microbiol. 2005,102: 195-201.

15. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistentinfections. Science. 1999, 284: 1318-1322.

16. Emch M., Feldacker C., Yunus M. et al. Effects of global climate on infectious disease: the cholera model. Am. J. Trap. Med. Hyg. 2008, 78: 823-832.

17. Faruque S.M., Albert M.J., Mekalanos J.J. Epidemiology, genetics, and ecology of toxigenic Vibrio cholera. Microbiol. Mol. Biol. Rev. 1998, 62 (4): 1301-1314.

18. Faruque S.M., Biswas K., Udden S.M. etal. Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc. Nat. Acad. Sci. USA. 2006, 103 (16): 6350-6355.

19. Franklin A., Soderlind O., Mollby R. Plasmids coding for enterotoxins, K88 antigen and colicins in porcine Escherichia coli strains of O-group 149. Med. Microbiol. Immunol. 1981,170:63-72.

20. Giglio K.M., Fong J.C., Yildiz F.H., Sondermann H. Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA. J. Bacteriol. 2013, 195 (14): 3277-3286.

21. Gillor O., Kirkur B.C., Riley M.A. Colicins and microcins: the next generation antimimicro-bials. Adv. Appl. Microbiol. 2004, 54: 129-146.

22. Gopalakrishnan S., Durai M., Kitchens K. et al. Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides. 2012, 35 (1): 86-94.

23. Hartley D.M., Morris J.M., Smith D.L. Hyperinfectivity: a critical element in the ability ofV. cholerae to cause epidemics? PLoS. Med. 2006, 3 (1): e7.

24. Islam M.S., Drasar B.S., Bradley D.J. Survival of toxigenic Vibrio cholerae 01 with a common duckweed, Lemna minor, in artificial aquatic ecosystems. Trans. R. Soc. Trop. Med. Hyg. 1990, 84 (3): 422-424.

25. Kaplan J.B., Ragunath C., Ramasubbu N., Fine D.H. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous (5-hexosaminidase activity. J. Bacteriol. 2003, 185 (16): 4693-4698.

26. Maestre-Reyna M., Wu W.J., Wang A.H. Structural insights into RbmA, a biofilm scaffolding protein ofV. cholerae. PLoS One. 2013, 8 (12): e82458.

27. Moorthy S., Watnic P.I. Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development. Mol. Microbiol. 2004, 52 (2): 573-587.

28. Mudrak B., Tamayo R. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity. Infect. Immun. 2012, 80 (5): 1794-1802.

29. Olivier V, Queen J., Satchell K.J.F Successful small intestine colonization of adult mice by Vibrio cholerae requires ketamine anesthesia and accessory toxins. PLoS One. 2009, 4 (10): e7352.

30. Parker Z.M., Pendergraft S.S., Sobieraj J. et al. Elevated levels ofthe norspermidine synthesis enzyme NspC enhance Vibrio cholerae biofilm formation without affecting intracellular norspermidine concentrations. Expert Rev. Gastroenterol. Hepatol. 2012, 6 (1): 17-23.

31. Purdy A.E., Watnick P.I. Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc. Nat. Acad. Sci. USA. 2011, 108 (49): 19737-19742.

32. Ray V.A., Morris A.R., Visick K.L. A semi-quantitative approach to assess biofilm formation using wrinkled colony development. J. Vis. Exp. 2012, 64: pii-4035.

33. Seper A., Fengler V.H., Roier S. et al. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation. Mol. Microbiol. 2011, 82 (4): 1015-1037.

34. Spagnuolo M.A., Dirita V, Kirschner D. A model for Vibrio cholerae colonization of the human intestine. J. Theor. Biol. 2011, 289: 247-258.

35. Suckow G., Seitz P., Blokesch M. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J. Bacteriol. 2011, 193 (18): 4914-4924.

36. Tamayo R., Pratt J.T., Camilli A. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annual Rev. Microbiol. 2007, 61: 131-148.

37. Tamayo R., PatimallaB., Camilli A. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect. Immun. 2010, 78 (8): 3560-3569.

38. Valeru S.P., Wai S.N., Saeed A. et al. ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii. BMC Res. Notes. 2012, 5 (1): 33.

39. Watnick P.I., Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 1999, 34: 586-595.

40. Zettler Erik R., Tracy J. Mincer, Linda A. Amaral-Zettler. Life in the «Plastisphere»: Microbial communities on plastic marine debris. Envir. Sci.Technol. 2013, 47 (13): 7137-7146.


Просмотров: 174


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0372-9311 (Print)
ISSN 2686-7613 (Online)