Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2018; : 3-9

ФУНКЦИОНАЛЬНЫЕ ГРУППЫ БИФИДОФЛОРЫ КИШЕЧНОЙ МИКРОБИОТЫ В АССОЦИАТИВНОМ СИМБИОЗЕ ЧЕЛОВЕКА

Бухарин О. В., Иванова Е. В., Перунова Н. Б., Никифоров И. А.

https://doi.org/10.36233/0372-9311-2018-1-3-9

Аннотация

Цель. Определение функциональных групп бифидофлоры толстого кишечника человека на основе анализа особенностей спектра метаболитов, протеома, биопрофиля, иммунорегуляторных свойств и способности проводить дифференцировку «свой-чужой» среди ассоциантов. Материалы и методы. Материалом служили 260 штаммов бифидобактерий, выделенных из 122 кишечных микросимбиоценозов. Экспериментальные исследования проводились с использованием бактериологических, хроматографического и иммунологических методов. Статистическая обработка материала выполнена средствами пакета Statistica 10.0 с использованием k-кластерного анализа и дискриминантного метода. Результаты. В результате работы определены 3 кластера, содержащих штаммы различных видов бифидобактерий. Первый кластер был представлен В. bifidum и характеризовался наличием антипептидной активности штаммов в отношении FNO-a и INF-y, IL-10. Во втором кластере преобладали культуры В. longum, где значимыми были параметры системообразующего фактора микросимбиоценоза, способность к микробному распознаванию, антагонистическая активность и продукция уксусной кислоты. В третьем кластере видовой состав бифидобактерий был разнообразен, а информативными тестами явились - продукция штаммами масляной, капроновой кислот и их изоформ. Заключение. Ключевая функция бифидофлоры в регуляции гомеостаза кишечного биотопа реализуется за счет образования функциональных кластеров, среди которых первая группа участвует в формировании цитокинового баланса, вторая - ответственна за дискриминацию ассоциативной микробиоты и прямую защиту биотопа от патогенов, а третья необходима для поддержания барьерной метаболической функции энтероцитов в толстом кишечнике человека.
Список литературы

1. Бухарин О.В., Лобакова Е.С., Перунова Н.Б., Усвяцов Б.Я., Черкасов С.В. Симбиоз и его роль в инфекции. Екатеринбург, УрО РАН, 2011.

2. Бухарин О.В., Перунова Н.Б., Иванова Е.В. Бифидофлора при ассоциативном симбиозе человека. Екатеринбург, УрО РАН, 2014.

3. Бухарин О.В., Перунова Н.Б. Микросимбиоценоз. Екатеринбург, УрО РАН, 2014.

4. Бухарин О.В., Иванова Е.В., Перунова Н.Б., Чайникова И.Н. Роль бифидобактерий в формировании иммунного гомеостаза человека. Журн. микробиол. 2015, 6: 98-104.

5. Aires J., Anglade R, Baraige F. et al. Proteomic comparison of the cytosolic proteins of three Bifidobacterium longum human isolates and B. longum NCC2705. BMC Microbiology. 2010, 10: 29.

6. Besten G., van Eunen K., Groen A. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54 (9): 23252340.

7. Campana R., van Hemert S., Baffone W. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog. 2017, 9:12.

8. Cheikhyoussef A., Pogori N., Chen H. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances (BLIS) produced by Bifidobacterium infantis BCRC 14602. Food Control. 2009,20: 553-559.

9. Ferrario C., Duranti S., Milani C. et al. Exploring amino acid auxotrophy in Bifidobacterium bifidum PRL2010. Front. Microbiol. 2015,6: 1331.

10. Kamada N., Nunez G. Role ofthe gut microbiota in the development and function oflymphoid cells. J. Immunol. 2013, 190 (4): 1389-1395.

11. Martinez FA., Balciunas E.M., Converti A. et al. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol. Adv. 2013, 31 (4): 482-488.

12. Milani C., Lugli G.A., Duranti S. et al. Genomic encyclopedia of type strains of the genus bifidobacterium. Appl. Environ. Microbiol. 2014, 80: 6290-6302.

13. Sampson T.R., Mazmanian S.K. Control ofbrain development, function, and behavior by the microbiome. Cell Host Microbe. 2015, 17 (5): 565-576.

14. Sun Y., O’Riordan M.X.D. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv. Appl. Microbiol. 2013, 85:93-118.

15. Turroni F., Tavemiti V, Ruas-Madiedo P.etal. Bifidobacterium bifidum PRL2010 modulates the host innate immune response. Appl. Environ. Microbiol. 2014, 80 (2): 730-740.

Journal of microbiology, epidemiology and immunobiology. 2018; : 3-9

FUNCTIONAL GROUPS OF BIFIDOFLORA OF INTESTINAL MICROBIOTA IN ASSOCIATIVE SYMBIOSIS OF HUMAN

Bukharin O. V., Ivanova E. V., Perunova N. B., Nikiforov I. A.

https://doi.org/10.36233/0372-9311-2018-1-3-9

Abstract

Aim. Aim of the research is the identification of functional groups of human gut bifidoflora based on analysis of the spectrum of metabolites features, proteome, bioprofile, immunoregulatory properties and the ability to differentiate «self/non-self» among the associative microbiota. Materials and methods. The materials are 260 strains ofbifidobacteria isolated from 122 intestinal microsymbiocenoses. Experimental studies were carried out using bacteriological, chromatographic and immunological methods. Statistical processing of material is carried out by means of the package Statistica 10.0 using of k-cluster analysis and discriminant method. Results. As a result ofthe work, 3 clusters containing strains of various types of bifidobacteria were identified. The first cluster was represented by B. bifidum and was characterized by the antipeptide activity of the strains with respect to FNO-a and INF-y, IL-10. In the second cluster of the B. longum culture predominated, where the parameters of the backbone factor of microsymbiocenosis, the ability to microbial recognition, antagonistic activity and production of acetic acid were significant. In the third cluster the species composition of bifidobacteria was diverse and products of butyric, caproic acids and their isoforms were the informative tests. Conclusion. The key function of bifido-flora in the regulation of the homeostasis of the intestinal biotope is realized by the formation of functional clusters, among which the first group participates in the formation of the cytokine balance, the second group is responsible for the discrimination of associative microbiota and direct protection of the biotope from pathogens, and the third is necessary to maintain the barrier metabolic function of enterocytes in the human large intestine.
References

1. Bukharin O.V., Lobakova E.S., Perunova N.B., Usvyatsov B.Ya., Cherkasov S.V. Simbioz i ego rol' v infektsii. Ekaterinburg, UrO RAN, 2011.

2. Bukharin O.V., Perunova N.B., Ivanova E.V. Bifidoflora pri assotsiativnom simbioze cheloveka. Ekaterinburg, UrO RAN, 2014.

3. Bukharin O.V., Perunova N.B. Mikrosimbiotsenoz. Ekaterinburg, UrO RAN, 2014.

4. Bukharin O.V., Ivanova E.V., Perunova N.B., Chainikova I.N. Rol' bifidobakterii v formirovanii immunnogo gomeostaza cheloveka. Zhurn. mikrobiol. 2015, 6: 98-104.

5. Aires J., Anglade R, Baraige F. et al. Proteomic comparison of the cytosolic proteins of three Bifidobacterium longum human isolates and B. longum NCC2705. BMC Microbiology. 2010, 10: 29.

6. Besten G., van Eunen K., Groen A. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54 (9): 23252340.

7. Campana R., van Hemert S., Baffone W. Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion. Gut Pathog. 2017, 9:12.

8. Cheikhyoussef A., Pogori N., Chen H. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances (BLIS) produced by Bifidobacterium infantis BCRC 14602. Food Control. 2009,20: 553-559.

9. Ferrario C., Duranti S., Milani C. et al. Exploring amino acid auxotrophy in Bifidobacterium bifidum PRL2010. Front. Microbiol. 2015,6: 1331.

10. Kamada N., Nunez G. Role ofthe gut microbiota in the development and function oflymphoid cells. J. Immunol. 2013, 190 (4): 1389-1395.

11. Martinez FA., Balciunas E.M., Converti A. et al. Bacteriocin production by Bifidobacterium spp. A review. Biotechnol. Adv. 2013, 31 (4): 482-488.

12. Milani C., Lugli G.A., Duranti S. et al. Genomic encyclopedia of type strains of the genus bifidobacterium. Appl. Environ. Microbiol. 2014, 80: 6290-6302.

13. Sampson T.R., Mazmanian S.K. Control ofbrain development, function, and behavior by the microbiome. Cell Host Microbe. 2015, 17 (5): 565-576.

14. Sun Y., O’Riordan M.X.D. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv. Appl. Microbiol. 2013, 85:93-118.

15. Turroni F., Tavemiti V, Ruas-Madiedo P.etal. Bifidobacterium bifidum PRL2010 modulates the host innate immune response. Appl. Environ. Microbiol. 2014, 80 (2): 730-740.