Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99: 353-361

Генетические полиморфизмы, ассоциированные с раком шейки матки: систематический обзор

Винокуров М. А., Миронов К. О., Корчагин В. И., Попова А. А.

https://doi.org/10.36233/0372-9311-251

Аннотация

Введение. Рак шейки матки (РШМ) является одним из самых распространённых онкологических заболеваний у женщин. Этиологический агент РШМ — вирус папилломы человека высокого канцерогенного риска. При этом не у всех женщин, инфицированных этим вирусом, развивается рак, что позволяет предположить наличие генетической предрасположенности к РШМ.

Цель работы заключалась в анализе информации об однонуклеотидных полиморфизмах, ассоциированных с риском развития РШМ.

Материалы и методы. Выполнен поиск исследований по полногеномному скринингу ассоциаций (GWAS) и метаанализов за последние 10 лет, посвящённых генетическому риску РШМ в европеоидной популяции.

Результаты. Наиболее значимые ассоциации с РШМ были найдены у следующих однонуклеотидных полиморфизмов. По данным GWAS — с аллелями риска rs138446575-T (ОШ = 2,39) TTC34; rs73728618-T (ОШ = 1,48) HLA-DQA1; rs3130196-C (ОШ = 1,4) HLA-DPB1; rs2516448-T (ОШ = 1,39 и 1,44) MICA и протективными аллелями rs9271898-А (ОШ = 0,64) и 9272143-С (ОШ = 0,65) между HLA-DRB1 и HLA-DQA1, rs55986091-A HLA-DQB1 (ОШ = 0,66). Для метаанализов — с генотипом rs4646903-СС (ОШ = 4,65) CYP1A1 и протективными аллелями — rs1801133-Т (ОШ = 0,77) MTHFR, rs2333227-АА (ОШ = 0,57) MPO.

Заключение. Использование полученных данных является важным этапом создания лабораторных методик и наборов реагентов, направленных на персонализированный подход к определению групп риска с целью рекомендации таким пациенткам обязательной вакцинации и скрининга предраковых заболеваний шейки матки.

Список литературы

1. Каприн А.Д., Старинский В.В., Шахзадова А.О. Состояние онкологической помощи населению России в 2019 году. М.; 2020.

2. Okunade K.S. Human papillomavirus and cervical cancer. J. Obstet. Gynaecol. 2020 40(5): 602-608. https://doi.org/10.1080/01443615.2019.1634030

3. Duenas-Gonzalez A., Serrano-Olvera A., Cetina L., Coronel J. New molecular targets against cervical cancer. Int. J. Womens Health. 2014; 6: 1023–31. https://doi.org/10.2147/IJWH.S49471

4. Баранов В.С., Иващенко Т.Э., Баранова Е.В., Асеев М.В., Глотов А.С., Глотов О.С. и др. Генетический паспорт — основа индивидуальной и предиктивной медицины. СПб.: Н-Л; 2009.

5. Попова А.А., Домонова Э.А., Виноградова Н.А., Шипулина О.Ю. Аногенитальная папилломавирусная инфекция у ВИЧ-инфицированных женщин (по результатам пилотного исследования в Московском регионе). Эпидемиология и инфекционные болезни. Актуальные вопросы. 2021; 11(3): 40–5. https://doi.org/10.18565/epidem.2021.11.3.40-5

6. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int. J. Surg. 2021; 88: 105906. https://doi.org/10.1016/j.ijsu.2021.105906

7. Page M.J., Shamseer L., Tricco A.C. Registration of systematic reviews in PROSPERO: 30,000 records and counting. Syst. Rev. 2020; 7(1): 32. https://doi.org/10.1186/s13643-018-0699-4

8. Higgins J.P.T., Thompson S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002; 21(11): 1539–58. https://doi.org/10.1002/sim.1186

9. Higgins J.P.T., Julian P.T. Cochrane Handbook for Syste matic Reviews of Interventions. John Wiley & Sons; 2019.

10. Borenstein M., Hedges L.V., Higgins J.P., Rothstein H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods. 2010; 1(2): 97–111. https://doi.org/10.1002/jrsm.12

11. Bowden S.J., Bodinier B., Kalliala I., Zuber V., Vuckovic D., Doulgeraki T., et al. Genetic variation in cervical preinvasive and invasive disease: a genome-wide association study. Lancet Oncol. 2021; 22(4): 548–57. https://doi.org/10.1016/S14702045(21)00028-0

12. Chen D., Juko-Pecirep I., Hammer J., Ivansson E., Enroth S., Gustavsson I., et al. Genome-wide association study of susceptibility loci for cervical cancer. J. Natl. Cancer Inst. 2013; 105(9): 624–33. https://doi.org/10.1093/jnci/djt051

13. Rashkin S.R., Graff R.E., Kachuri L., Thai K.K., Alexeeff S.E., Blatchins M.A., et al. Pan-cancer study detects genetic risk variants and shared genetic basis in two large cohorts. Nat. Commun. 2020; 11(1): 4423. https://doi.org/10.1038/s41467-020-18246-6

14. Chen D., Enroth S., Liu H., Sun Y., Wang H., Yu M., et al. Pooled analysis of genome-wide association studies of cervical intraepithelial neoplasia 3 (CIN3) identifies a new susceptibility locus. Oncotarget. 2016; 7(27): 42216–24. https://doi.org/10.18632/oncotarget.9916

15. Flicek P., Aken B.L., Ballester B., Beal K., Bragin E., Brent S., et al. Ensembl's 10th year. Nucleic Acids Res. 2010; 38(Database issue): D557–62. https://doi.org/10.1093/nar/gkp972

16. Mei Q., Zhou D., Gao J., Shen S., Wu J. Guo L., Liang Z. The association between MTHFR 677C>T polymorphism and cervical cancer: evidence from a meta-analysis. BMC Cancer. 2012; 12: 467. https://doi.org/10.1186/1471-2407-12-467

17. Lambropoulos A.F., Agorastos T., Foka Z.J., Chrisafi S., Constantinidis T.C., Bontis J., et al. Methylenetetrahydrofolate reductase polymorphism C677T is not associated to the risk of cervical dysplasia. Cancer Lett. 2003; 191(2): 187–91. https://doi.org/10.1016/s0304-3835(02)00675-4

18. Zoodsma M., Nolte I.M., Schipper M., Oosterom E., van der Steege G., de Vries E.G., et al. Methylenetetrahydrofolate reductase (MTHFR) and susceptibility for (pre)neoplastic cervical disease. Hum. Genet. 2005; 116(4): 247–54. https://doi.org/10.1007/s00439-004-1233-4

19. Mostowska A., Myka M., Lianeri M., Roszak A., Jagodziński P.P. Folate and choline metabolism gene variants and development of uterine cervical carcinoma. Clin. Biochem. 2011; 44(8-9): 596–600. https://doi.org/10.1016/j.clinbiochem.2011.02.007

20. Xu H.B., Yang H., Liu T., Chen H. Association of CTLA4 gene polymorphism (rs5742909) with cervical cancer: a meta-analysis. Tumour Biol. 2014; 35(2): 1605–8. https://doi.org/10.1007/s13277-013-1221-1

21. Pawlak E., Karabon L., Wlodarska-Polinska I., Jedynak A., Jonkisz A., Tomkiewicz A., et al. Influence of CTLA-4/CD28/ ICOS gene polymorphisms on the susceptibility to cervical squamous cell carcinoma and stage of differentiation in the Polish population. Hum. Immunol. 2010; 71(2): 195–200. https://doi.org/10.1016/j.humimm.2009.11.006

22. Ivansson E.L., Juko-Pecirep I., Gyllensten U.B. Interaction of immunological genes on chromosome 2q33 and IFNG in susceptibility to cervical cancer. Gynecol. Oncol. 2010; 116(3): 544–8. https://doi.org/10.1016/j.ygyno.2009.10.084

23. Ding B., Sun W., Han S., Cai Y., Ren M., Shen Y. Cytochrome P450 1A1 gene polymorphisms and cervical cancer risk: A systematic review and meta-analysis. Medicine (Baltimore). 2018; 97(13): e0210. https://doi.org/10.1097/MD.0000000000010210

24. Gutman G., Morad T., Peleg B., Peretz C., Bar-Am A., Safra T., et al. CYP1A1 and CYP2D6 gene polymorphisms in Israeli Jewish women with cervical cancer. Int. J. Gynecol. Cancer. 2009; 19(8): 1300–2. https://doi.org/10.1111/IGC.0b013e3181b9fa5d

25. von Keyserling H., Bergmann T., Schuetz M., Schiller U., Stanke J., Hoffmann C., et al. Analysis of 4 single-nucleotide polymorphisms in relation to cervical dysplasia and cancer development using a high-throughput ligation-detection reaction procedure. Int. J. Gynecol. Cancer. 2011; 21(9): 1664–71. https://doi.org/10.1097/IGC.0b013e31822b6299

26. Matos A., Castelão C., Pereira da Silva A., Alho I., Bicho M., Medeiros R., et al. Epistatic interaction of CYP1A1 and COMT polymorphisms in cervical cancer. Oxid. Med. Cell. Longev. 2016; 2016: 2769804. https://doi.org/10.1155/2016/2769804

27. Taskiran C., Aktas D., Yigit-Celik N., Alikasifoglu M., Yuce K., Tunçbilek E., et al. CYP1A1 gene polymorphism as a risk factor for cervical intraepithelial neoplasia and invasive cervical cancer. Gynecol. Oncol. 2006; 101(3): 503–6. https://doi.org/10.1016/j.ygyno.2005.11.018

28. Roszak A., Lianeri M., Sowińska A., Jagodziński P.P. CYP1A1 Ile462Val polymorphism as a risk factor in cervical cancer development in the Polish population. Mol. Diagn. Ther. 2014; 18(4): 445–50. https://doi.org/10.1007/s40291-014-0095-2

29. Li M., Han Y., Wu T.T., Feng Y., Wang H.B. Tumor necrosis factor alpha rs1800629 polymorphism and risk of cervical lesions: a meta-analysis. PLoS One. 2013; 8(8): e69201. https://doi.org/10.1371/journal.pone.0069201

30. Calhoun E.S., McGovern R.M., Janney C.A., Cerhan J.R., Iturria S.J., Smith D.I., et al. Host genetic polymorphism analysis in cervical cancer. Clin. Chem. 2002; 48(8): 1218–24. https://doi.org/10.1093/clinchem/48.8.1218

31. Deshpande A., Nolan J.P., White P.S., Valdez Y.E., Hunt W.C., Peyton C.L., et al. TNF-alpha promoter polymorphisms and susceptibility to human papillomavirus 16-associated cervical cancer. J. Infect. Dis. 2005; 191(6): 969–76. https://doi.org/10.1086/427826

32. Duarte I., Santos A., Sousa H., Catarino R., Pinto D., et al. G-308A TNF-alpha polymorphism is associated with an increased risk of invasive cervical cancer. Biochem. Biophys. Res. Commun. 2005; 334(2): 588–92. https://doi.org/10.1016/j.bbrc.2005.06.137

33. Gostout B.S., Poland G.A., Calhoun E.S., Sohni Y.R., Giuntoli R.L., Matos A., et al. TAP1, TAP2, and HLA-DR2 alleles are predictors of cervical cancer risk. Gynecol. Oncol. 2003; 88(3): 326–32. https://doi.org/10.1016/s0090-8258(02)00074-4

34. Shi X., Li B., Yuan Y., Chen L., Zhang Y., Yang M., et al. The possible association between the presence of an MPO -463 G > A (rs2333227) polymorphism and cervical cancer risk. Pathol. Res. Pract. 2018; 214(8): 1142–8. https://doi.org/10.1016/j.prp.2018.05.018

35. Mustea A., Heinze G., Sehouli J., Koensgen D., Wolf A., Gutu L., et al. The -463G/A polymorphism in myeloperoxidase gene and cervical cancer. Anticancer Res. 2007; 27(3B): 1531–5. https://doi.org/10.1007/s11010-015-2359-5

36. Castelão C., da Silva A.P., Matos A., Inácio Â., Bicho M., Medeiros R., et al. Association of myeloperoxidase polymorphism (G463A) with cervix cancer. Mol. Cell Biochem. 2015; 404(1-2): 1–4. https://doi.org/10.1007/s11010-015-2359-5

37. Roszak A., Lutkowska A., Lianeri M., Sowińska A., Jagodziński P.P. Involvement of myeloperoxidase gene polymorphism 463G>A in development of cervical squamous cell carcinoma. Int. J. Biol. Markers. 2016; 31(4): e440–5. https://doi.org/10.5301/jbm.5000212

38. Morton S.C., Adams J.L., Suttorp M.J., Shekelle P.G. Meta-Regression Approaches: What, Why, When, and How? Rockville (MD): Agency for Healthcare Research and Quality (US); 2004.

39. Ramachandran D., Dörk T. Genomic risk factors for cervical cancer. Cancers (Basel). 2021; 13(20): 5137. https://doi.org/10.3390/cancers13205137

40. Назаров В.С., Сисигина Н.Н. Экономика генетического здра воохранения. Экономическая политика. 2018; 13(6): 188–213. https://doi.org/10.18288/1994-5124-2018-6-188-213

41. Korchagin V., Mironov K., Platonov A., Dribnokhodova O., Akselrod E., Dunaeva E., et al. Application of the genetic risk model for the analysis of predisposition to nonlacunar ischemic stroke. Per. Med. 2019; 16(5): 369–78. https://doi.org/10.2217/pme-2018-0104

Journal of microbiology, epidemiology and immunobiology. 2022; 99: 353-361

Genetic polymorphism associated with cervical cancer: a systematic review

Vinokurov M. A., Mironov K. O., Korchagin V. I., Popova A. A.

https://doi.org/10.36233/0372-9311-251

Abstract

Introduction. Cervical cancer (CC) is one of the most common cancers in women. The CC etiological agent is the high-risk oncogenic human papillomavirus. In the meantime, not all women infected with this virus can develop cancer, thus suggesting that there is genetic predisposition to CC.

The aim of the study was to analyze information about single nucleotide polymorphisms associated with the CC risk.

Materials and methods. The performed search was focused on genome-wide association studies (GWAS) and meta-analyses conducted over the last 10 years and addressing the genetic risk of CC in the Caucasian population.

Results. The most significant associations with CC were found in the following single nucleotide polymorphisms. Based on the GWAS data, they involve risk alleles rs138446575-T (OR = 2.39) TTC34; rs73728618-T (OR = 1.48) HLA-DQA1; rs3130196-C (OR = 1.4) HLA-DPB1; rs2516448-T (OR = 1.39 and 1.44) MICA and protective alleles rs9271898-A (OR = 0.64) and 9272143-C (OR = 0.65) between HLA-DRB1 and HLA-DQA1, rs55986091-A HLADQB1 (OR = 0.66). Based on the meta-analysis data, they involve genotype rs4646903-СС (OR = 4.65) CYP1A1 and protective alleles rs1801133-T (OR = 0.77) MTHFR, rs2333227-AA (OR = 0.57) MPO.

Conclusion. The obtained data are critically important for development of laboratory techniques and reagent kits allowing for a personalized approach to identification of risk groups, which could benefit from compulsory vaccination and screening for pre-cancers of the cervix.

References

1. Kaprin A.D., Starinskii V.V., Shakhzadova A.O. Sostoyanie onkologicheskoi pomoshchi naseleniyu Rossii v 2019 godu. M.; 2020.

2. Okunade K.S. Human papillomavirus and cervical cancer. J. Obstet. Gynaecol. 2020 40(5): 602-608. https://doi.org/10.1080/01443615.2019.1634030

3. Duenas-Gonzalez A., Serrano-Olvera A., Cetina L., Coronel J. New molecular targets against cervical cancer. Int. J. Womens Health. 2014; 6: 1023–31. https://doi.org/10.2147/IJWH.S49471

4. Baranov V.S., Ivashchenko T.E., Baranova E.V., Aseev M.V., Glotov A.S., Glotov O.S. i dr. Geneticheskii pasport — osnova individual'noi i prediktivnoi meditsiny. SPb.: N-L; 2009.

5. Popova A.A., Domonova E.A., Vinogradova N.A., Shipulina O.Yu. Anogenital'naya papillomavirusnaya infektsiya u VICh-infitsirovannykh zhenshchin (po rezul'tatam pilotnogo issledovaniya v Moskovskom regione). Epidemiologiya i infektsionnye bolezni. Aktual'nye voprosy. 2021; 11(3): 40–5. https://doi.org/10.18565/epidem.2021.11.3.40-5

6. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Int. J. Surg. 2021; 88: 105906. https://doi.org/10.1016/j.ijsu.2021.105906

7. Page M.J., Shamseer L., Tricco A.C. Registration of systematic reviews in PROSPERO: 30,000 records and counting. Syst. Rev. 2020; 7(1): 32. https://doi.org/10.1186/s13643-018-0699-4

8. Higgins J.P.T., Thompson S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002; 21(11): 1539–58. https://doi.org/10.1002/sim.1186

9. Higgins J.P.T., Julian P.T. Cochrane Handbook for Syste matic Reviews of Interventions. John Wiley & Sons; 2019.

10. Borenstein M., Hedges L.V., Higgins J.P., Rothstein H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods. 2010; 1(2): 97–111. https://doi.org/10.1002/jrsm.12

11. Bowden S.J., Bodinier B., Kalliala I., Zuber V., Vuckovic D., Doulgeraki T., et al. Genetic variation in cervical preinvasive and invasive disease: a genome-wide association study. Lancet Oncol. 2021; 22(4): 548–57. https://doi.org/10.1016/S14702045(21)00028-0

12. Chen D., Juko-Pecirep I., Hammer J., Ivansson E., Enroth S., Gustavsson I., et al. Genome-wide association study of susceptibility loci for cervical cancer. J. Natl. Cancer Inst. 2013; 105(9): 624–33. https://doi.org/10.1093/jnci/djt051

13. Rashkin S.R., Graff R.E., Kachuri L., Thai K.K., Alexeeff S.E., Blatchins M.A., et al. Pan-cancer study detects genetic risk variants and shared genetic basis in two large cohorts. Nat. Commun. 2020; 11(1): 4423. https://doi.org/10.1038/s41467-020-18246-6

14. Chen D., Enroth S., Liu H., Sun Y., Wang H., Yu M., et al. Pooled analysis of genome-wide association studies of cervical intraepithelial neoplasia 3 (CIN3) identifies a new susceptibility locus. Oncotarget. 2016; 7(27): 42216–24. https://doi.org/10.18632/oncotarget.9916

15. Flicek P., Aken B.L., Ballester B., Beal K., Bragin E., Brent S., et al. Ensembl's 10th year. Nucleic Acids Res. 2010; 38(Database issue): D557–62. https://doi.org/10.1093/nar/gkp972

16. Mei Q., Zhou D., Gao J., Shen S., Wu J. Guo L., Liang Z. The association between MTHFR 677C>T polymorphism and cervical cancer: evidence from a meta-analysis. BMC Cancer. 2012; 12: 467. https://doi.org/10.1186/1471-2407-12-467

17. Lambropoulos A.F., Agorastos T., Foka Z.J., Chrisafi S., Constantinidis T.C., Bontis J., et al. Methylenetetrahydrofolate reductase polymorphism C677T is not associated to the risk of cervical dysplasia. Cancer Lett. 2003; 191(2): 187–91. https://doi.org/10.1016/s0304-3835(02)00675-4

18. Zoodsma M., Nolte I.M., Schipper M., Oosterom E., van der Steege G., de Vries E.G., et al. Methylenetetrahydrofolate reductase (MTHFR) and susceptibility for (pre)neoplastic cervical disease. Hum. Genet. 2005; 116(4): 247–54. https://doi.org/10.1007/s00439-004-1233-4

19. Mostowska A., Myka M., Lianeri M., Roszak A., Jagodziński P.P. Folate and choline metabolism gene variants and development of uterine cervical carcinoma. Clin. Biochem. 2011; 44(8-9): 596–600. https://doi.org/10.1016/j.clinbiochem.2011.02.007

20. Xu H.B., Yang H., Liu T., Chen H. Association of CTLA4 gene polymorphism (rs5742909) with cervical cancer: a meta-analysis. Tumour Biol. 2014; 35(2): 1605–8. https://doi.org/10.1007/s13277-013-1221-1

21. Pawlak E., Karabon L., Wlodarska-Polinska I., Jedynak A., Jonkisz A., Tomkiewicz A., et al. Influence of CTLA-4/CD28/ ICOS gene polymorphisms on the susceptibility to cervical squamous cell carcinoma and stage of differentiation in the Polish population. Hum. Immunol. 2010; 71(2): 195–200. https://doi.org/10.1016/j.humimm.2009.11.006

22. Ivansson E.L., Juko-Pecirep I., Gyllensten U.B. Interaction of immunological genes on chromosome 2q33 and IFNG in susceptibility to cervical cancer. Gynecol. Oncol. 2010; 116(3): 544–8. https://doi.org/10.1016/j.ygyno.2009.10.084

23. Ding B., Sun W., Han S., Cai Y., Ren M., Shen Y. Cytochrome P450 1A1 gene polymorphisms and cervical cancer risk: A systematic review and meta-analysis. Medicine (Baltimore). 2018; 97(13): e0210. https://doi.org/10.1097/MD.0000000000010210

24. Gutman G., Morad T., Peleg B., Peretz C., Bar-Am A., Safra T., et al. CYP1A1 and CYP2D6 gene polymorphisms in Israeli Jewish women with cervical cancer. Int. J. Gynecol. Cancer. 2009; 19(8): 1300–2. https://doi.org/10.1111/IGC.0b013e3181b9fa5d

25. von Keyserling H., Bergmann T., Schuetz M., Schiller U., Stanke J., Hoffmann C., et al. Analysis of 4 single-nucleotide polymorphisms in relation to cervical dysplasia and cancer development using a high-throughput ligation-detection reaction procedure. Int. J. Gynecol. Cancer. 2011; 21(9): 1664–71. https://doi.org/10.1097/IGC.0b013e31822b6299

26. Matos A., Castelão C., Pereira da Silva A., Alho I., Bicho M., Medeiros R., et al. Epistatic interaction of CYP1A1 and COMT polymorphisms in cervical cancer. Oxid. Med. Cell. Longev. 2016; 2016: 2769804. https://doi.org/10.1155/2016/2769804

27. Taskiran C., Aktas D., Yigit-Celik N., Alikasifoglu M., Yuce K., Tunçbilek E., et al. CYP1A1 gene polymorphism as a risk factor for cervical intraepithelial neoplasia and invasive cervical cancer. Gynecol. Oncol. 2006; 101(3): 503–6. https://doi.org/10.1016/j.ygyno.2005.11.018

28. Roszak A., Lianeri M., Sowińska A., Jagodziński P.P. CYP1A1 Ile462Val polymorphism as a risk factor in cervical cancer development in the Polish population. Mol. Diagn. Ther. 2014; 18(4): 445–50. https://doi.org/10.1007/s40291-014-0095-2

29. Li M., Han Y., Wu T.T., Feng Y., Wang H.B. Tumor necrosis factor alpha rs1800629 polymorphism and risk of cervical lesions: a meta-analysis. PLoS One. 2013; 8(8): e69201. https://doi.org/10.1371/journal.pone.0069201

30. Calhoun E.S., McGovern R.M., Janney C.A., Cerhan J.R., Iturria S.J., Smith D.I., et al. Host genetic polymorphism analysis in cervical cancer. Clin. Chem. 2002; 48(8): 1218–24. https://doi.org/10.1093/clinchem/48.8.1218

31. Deshpande A., Nolan J.P., White P.S., Valdez Y.E., Hunt W.C., Peyton C.L., et al. TNF-alpha promoter polymorphisms and susceptibility to human papillomavirus 16-associated cervical cancer. J. Infect. Dis. 2005; 191(6): 969–76. https://doi.org/10.1086/427826

32. Duarte I., Santos A., Sousa H., Catarino R., Pinto D., et al. G-308A TNF-alpha polymorphism is associated with an increased risk of invasive cervical cancer. Biochem. Biophys. Res. Commun. 2005; 334(2): 588–92. https://doi.org/10.1016/j.bbrc.2005.06.137

33. Gostout B.S., Poland G.A., Calhoun E.S., Sohni Y.R., Giuntoli R.L., Matos A., et al. TAP1, TAP2, and HLA-DR2 alleles are predictors of cervical cancer risk. Gynecol. Oncol. 2003; 88(3): 326–32. https://doi.org/10.1016/s0090-8258(02)00074-4

34. Shi X., Li B., Yuan Y., Chen L., Zhang Y., Yang M., et al. The possible association between the presence of an MPO -463 G > A (rs2333227) polymorphism and cervical cancer risk. Pathol. Res. Pract. 2018; 214(8): 1142–8. https://doi.org/10.1016/j.prp.2018.05.018

35. Mustea A., Heinze G., Sehouli J., Koensgen D., Wolf A., Gutu L., et al. The -463G/A polymorphism in myeloperoxidase gene and cervical cancer. Anticancer Res. 2007; 27(3B): 1531–5. https://doi.org/10.1007/s11010-015-2359-5

36. Castelão C., da Silva A.P., Matos A., Inácio Â., Bicho M., Medeiros R., et al. Association of myeloperoxidase polymorphism (G463A) with cervix cancer. Mol. Cell Biochem. 2015; 404(1-2): 1–4. https://doi.org/10.1007/s11010-015-2359-5

37. Roszak A., Lutkowska A., Lianeri M., Sowińska A., Jagodziński P.P. Involvement of myeloperoxidase gene polymorphism 463G>A in development of cervical squamous cell carcinoma. Int. J. Biol. Markers. 2016; 31(4): e440–5. https://doi.org/10.5301/jbm.5000212

38. Morton S.C., Adams J.L., Suttorp M.J., Shekelle P.G. Meta-Regression Approaches: What, Why, When, and How? Rockville (MD): Agency for Healthcare Research and Quality (US); 2004.

39. Ramachandran D., Dörk T. Genomic risk factors for cervical cancer. Cancers (Basel). 2021; 13(20): 5137. https://doi.org/10.3390/cancers13205137

40. Nazarov V.S., Sisigina N.N. Ekonomika geneticheskogo zdra vookhraneniya. Ekonomicheskaya politika. 2018; 13(6): 188–213. https://doi.org/10.18288/1994-5124-2018-6-188-213

41. Korchagin V., Mironov K., Platonov A., Dribnokhodova O., Akselrod E., Dunaeva E., et al. Application of the genetic risk model for the analysis of predisposition to nonlacunar ischemic stroke. Per. Med. 2019; 16(5): 369–78. https://doi.org/10.2217/pme-2018-0104