Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2022; 99: 309-321

Характеристика Pseudomonas aeruginosa, выделенных из положительных проб гемокультур и ликвора у детей

Садеева З. З., Новикова И. Е., Алябьева Н. М., Лазарева А. В., Карасева О. В., Фисенко А. П.

https://doi.org/10.36233/0372-9311-241

Аннотация

Введение. Инфекции кровотока и центральной нервной системы (ЦНС), вызванные Pseudomonas aeruginosa, связаны с тяжёлым состоянием пациентов и нередко сопровождаются высокой летальностью.

Цель — молекулярно-генетическая характеристика P. aeruginosa, выделенных из положительных проб гемокультур и ликвора пациентов до 18 лет из отделений реанимации и интенсивной терапии стационаров.

Материалы и методы. Проведено ретроспективное исследование случаев бактериемии и инфекции ЦНС, связанных с P. aeruginosa, с 2014 по 2021 г. Изучены 24 клинических изолята P. aeruginosa из положительных гемокультур и ликвора. В структуре пациентов были 16 детей с хирургической патологией и 8 пациентов соматического профиля. Минимальную подавляющую концентрацию антибиотиков определяли методом серийных микроразведений в бульоне. Карбапенемазы выявляли в ПЦР в режиме реального времени. Гены вирулентности определяли методом ПЦР. Популяционное разнообразие оценивали методом мультилокусного сиквенс-типирования (МЛСТ).

Результаты. В 28% случаев при бактериемии и инфекции ЦНС, ассоциированной с P. aeruginosa, был летальный исход. Более 70% изолятов проявляли устойчивость к карбапенемным антибиотикам. Фенотипом множественной лекарственной устойчивости обладали 25% изолятов. Экстремальную резистентность проявляли 54% изолятов. Частота выявления металло-β-лактамаз составила 54%. При проведении ПЦР у 33% штаммов выявлен ExoU-тип, у 67% — ExoS-тип. По данным МЛСТ определено 16 генотипов. В структуре преобладали сиквенс-типы ST654 (29%) и ST235 (12,5%).

Заключение. Изоляты P. aeruginosa, выделенные из положительных гемокультур и проб ликвора, обладают высокой резистентностью к антибиотикам, гены вирулентности обнаружены у всех изолятов. Чаще в изученной выборке определялись штаммы высокого эпидемического риска. Более четверти описанных клинических случаев имели неблагоприятный исход.

Список литературы

1. Teelucksingh K., Shaw E. Clinical characteristics, appropriateness of empiric antibiotic therapy, and outcome of Pseudomonas aeruginosa bacteremia across multiple community hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 2022; 41(1): 53–62. https://doi.org/10.1007/s10096-021-04342-y

2. Jarlier V., Diaz Högberg L., Heuer O.E., Campos J., Eckmanns T., Giske C.G., et al. Strong correlation between the rates of intrinsically antibiotic-resistant species and the rates of acquired resistance in Gram-negative species causing bacteraemia, EU/EEA, 2016. Euro Surveill. 2019; 24(33): 1800538. https://doi.org/10.2807/1560-7917.ES.2019.24.33.1800538

3. Козлов Р.С., Голуб А.В., Дехнич А.В., Сухорукова М.В. Антибиотикорезистентность грамотрицательных возбудителей осложненных интраабдоминальных инфекций в России. Клиническая микробиология и антимикробная химиотерапия. 2015; 17(3): 227–34.

4. Лазарева А.В., Чеботарь И.В., Крыжановская О.А., Чеботарь В.И., Маянский Н.А. Pseudomonas aeruginosa: патогенность, патогенез и патология. Клиническая микробиология и антимикробная химиотерапия. 2015; 17(3): 170–86.

5. Breidenstein E.B., de la Fuente-Núñez C., Hancock R.E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19(8): 419–26. https://doi.org/10.1016/j.tim.2011.04.005

6. Saima S., Fiaz M., Manzoor M., Zafar R., Ahmed I., Nawaz U., et al. Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. 3 Biotech. 2020; 10(9): 378. https://doi.org/10.1007/s13205-020-02366-3

7. Mokhtari A., Amini K. Genotyping of Pseudomonas aeruginosa strains as a Multidrug Resistant (MDR) bacterium and evaluating the prevalence of Esbls and some virulence factors encoding genes by PFGE and ERIC-PCR methods. Iran J. Pharm. Res. 2019; 18(3): 1580–94. https://doi.org/10.22037/ijpr.2019.1100762

8. Sato H., Frank D.W. ExoU is a potent intracellular phospholipase. Mol. Microbiol. 2004; 53(5): 1279–90. https://doi.org/10.1111/j.1365-2958.2004.04194.x

9. Hardy K.S., Tessmer M.H., Frank D.W., Audia J.P. Perspectives on the Pseudomonas aeruginosa type III secretion system effector ExoU and its subversion of the host innate immune response to infection. Toxins (Basel). 2021; 13(12): 880. https://doi.org/10.3390/toxins13120880

10. Aloush V., Navon-Venezia S., Seigman-Igra Y., Cabili S., Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob. Agents Chemother. 2006; 50(1): 43–8. https://doi.org/10.1128/AAC.50.1.43-48.2006

11. Strateva T., Mitov I., Markova B. Prevalence of virulence genes among Bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Braz. J. Microbiol. 2010; 41(3): 588–95. https://doi.org/10.1590/S1517-83822010000300008

12. Jolley K.A., Bray J.E., Maiden M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018; 3: 124. https://doi.org/10.12688/wellcomeopenres.14826.1

13. Wisplinghoff H., Bischoff T., Tallent S.M., Seifert H., Wenzel R.P., Edmond M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004; 39(3): 309–17. https://doi.org/10.1086/421946

14. Sawa T., Shimizu M., Moriyama K., Wiener-Kronish J.P. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. Crit. Care. 2014; 18(6): 668. https://doi.org/10.1186/s13054-014-0668-9

15. Эйдельштейн М.В., Сухорукова Е.А., Склеенова Е.Ю., Иван чик Н.В., Шайдулина Е.Р., Микотина А.В. и др. Устойчивость к антибиотикам, продукция карбапенемаз и генотипы внутрибольничных штаммов Pseudomonas aeru gi nosa в российских больницах: результаты многоцентрового эпидемиологического исследования «МАРАФОН 2015–2016». Клиническая микробиология и антимикробная гемотерапия. 2019; 21(2): 160–70. https://doi.org/10.36488/cmac.2019.2.160-170

16. Первухин С.А., Стаценко И.А., Иванова Э.Ю., Пальмаш А.В., Витковская И.В., Жидкова О.В. Антибиотикорезистентность грамотрицательных возбудителей нозокомиальной пневмонии у пациентов отделения реанимации и интенсивной терапии. Клиническая микробиология и антимикробная химиотерапия. 2019; 21(1): 62–8. https://doi.org/10.36488/cmac.2019.1.62-68

17. Quillici M.C.B., Resende D.S., Gonçalves I.R., Royer S., Sabino S.S., Almeida V.F., et al. Gram-negative bacilli bacteremia: a 7 year retrospective study in a referral Brazilian tertiary-care teaching hospital. J. Med. Microbiol. 2021; 70(1). https://doi.org/10.1099/jmm.0.001277

18. Tam V.H., Rogers C.A., Chang K.T., Weston J.S., Caeiro J.P., Garey K.W. Impact of Multidrug-Resistant Pseudomonas aeruginosa Bacteremia on Patient Outcomes. Antimicrob. Agents Chemother. 2010; 54(9): 3717–22. https://doi.org/10.1128/aac.00207-10

19. Sawa T., Hamaoka S., Kinoshita M., Kainuma A., Naito Y., Akiyama K., et al. Pseudomonas aeruginosa type III secretory toxin ExoU and its predicted homologs. Toxins (Basel). 2016; 8(11): 307. https://doi.org/10.3390/toxins8110307

20. Zhuo C., Wang L.X., Xiao S.N., Li H.Y., Qiu G.X., Zhong N.S. Clinical significance of virulence-related genes of type III secretion system of Pseudomonas aeruginosa. Zhonghua Shao Shang Za Zhi. 2010; 26(5): 354–9. (in Chinese)

21. Foulkes D.M., McLean K., Haneef A.S., Fernig D.G., Winstanley C., Berry N., et al. Pseudomonas aeruginosa toxin ExoU as a therapeutic target in the treatment of bacterial infections. Microorganisms. 2019; 7(12): 707. https://doi.org/10.3390/microorganisms7120707

22. Springer T.I., Reid T.E., Gies S.L., Feix J.B. Interactions of the effector ExoU from Pseudomonas aeruginosa with short-chain phosphatidylinositides provide insights into ExoU targeting to host membranes. J. Biol. Chem. 2019; 294(50): 19012–21. https://doi.org/10.1074/jbc.RA119.010278

23. Wagener B.M., Hu R., Wu S., Pittet J.F., Ding Q., Che P. The role of Pseudomonas aeruginosa virulence factors in cytoskeletal dysregulation and lung barrier dysfunction. Toxins (Basel). 2021; 13(11): 776. https://doi.org/10.3390/toxins13110776

24. Lomholt J.A., Poulsen K., Kilian M. Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect. Immun. 2001; 69(10): 6284–95. https://doi.org/10.1128/IAI.69.10.6284-6295.2001

25. Hirakata Y., Finlay B.B., Simpson D.A., Kohno S., Kamihira S., Speert D.P. Penetration of clinical isolates of Pseudomonas aeruginosa through MDCK epithelial cell monolayers. J. Infect. Dis. 2000; 181(2): 765–9. https://dx.doi.org/10.1086/315276.

26. Zarei O., Mahmoudi H., Bardbari A.M., Karami P., Ali khani M.Y. Detection of virulence factors and antibiotic resistance pattern of clinical and intensive care unit environmental isolates of Pseudomonas aeruginosa. Infect. Disord. Drug Targets. 2020; 20(5): 758–62. https://doi.org/10.2174/1871526520666191231124717

27. Elmouaden C., Laglaoui A., Ennanei L., Bakkali M., Abid M. Virulence genes and antibiotic resistance of Pseudomonas aeruginosa isolated from patients in the Northwestern of Morocco. J. Infect. Dev. Ctries. 2019; 13(10): 892–8. https://doi.org/10.3855/jidc.1067

28. Del Barrio-Tofiño E., López-Causapé C., Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents. 2020; 56(6): 106196. https://doi.org/10.1016/j.ijantimicag.2020.106196

29. Edelstein M.V., Skleenova E.N., Shevchenko O.V., D’souza J.W., Tapalski D.V., Azizov I.S., et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect. Dis. 2013; 13(10): 867–76. https://doi.org/10.1016/s1473-3099(13)70168-3

30. Recio R., Villa J., Viedma E., Orellana M.Á., Lora-Tamayo J., Chaves F. Bacteraemia due to extensively drug-resistant Pseudomonas aeruginosa sequence type 235 high-risk clone: Fa cing the perfect storm. Int. J. Antimicrob. Agents. 2018; 52(2): 172–9. https://doi.org/10.1016/j.ijantimicag.2018.03.018

31. Vidal F., Mensa J., Almela M., Martínez J.A., Marco F., Casals C., et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Arch. Intern. Med. 1996; 156(18): 2121–6. https://doi.org/10.1001/archinte.1996.00440170139015

32. Xu H., Cheng J., Yu Q., Li Q., Yi Q., Luo S., et al. Prognostic role of time to positivity of blood culture in children with Pseudomonas aeruginosa bacteremia. BMC Infect. Dis. 2020; 20(1): 665. https://doi.org/10.1186/s12879-020-05257-3

33. Santoro A., Franceschini E., Meschiari M., Menozzi M., Zona S., Venturelli C., et al. Epidemiology and risk factors associated with mortality in consecutive patients with bacterial bloodstream infection: impact of MDR and XDR bacteria. Open Forum Infect. Dis. 2020; 7(11): ofaa461. https://doi.org/10.1093/ofid/ofaa461

34. Pilmis B., Alby-Laurent F., Fasola M.L., Seegers V., Guery R., Guet-Revillet H., et al. Pseudomonas aeruginosa bloodstream infections in children: a 9-year retrospective study. Eur. J. Pediatr. 2020; 179(6): 1247–54. https://doi.org/10.1007/s00431-020-03598-4

35. Barbosa C., Mahrt N., Bunk J., Graßer M., Rosenstiel P., Jansen G., et al. The genomic basis of rapid adaptation to antibiotic combination therapy in Pseudomonas aeruginosa. Mol. Biol. Evol. 2021; 38(2): 449–64. https://doi.org/10.1093/molbev/msaa233

36. Chiong F., Wasef M.S., Liew K.C., Cowan R., Tsai D., Lee Y.P., et al. The impact of infectious diseases consultation on the mana gement and outcomes of Pseudomonas aeruginosa bacte raemia in adults: a retrospective cohort study. BMC Infect. Dis. 2021; 21(1): 671. https://doi.org/10.1186/s12879-021-06372-5

Journal of microbiology, epidemiology and immunobiology. 2022; 99: 309-321

Characterization of Pseudomonas aeruginosa isolated from positive samples of hemocultures and cerebrospinal fluid of children

Sadeeva Z. Z., Novikova I. E., Alyabyeva N. A., Lazareva A. V., Karaseva O. V., Fisenko А. P.

https://doi.org/10.36233/0372-9311-241

Abstract

Introduction. Infections of the bloodstream and central nervous system (CNS) caused by Pseudomonas aeruginosa are associated with a serious patient conditions and are often accompanied by high mortality.

Aim. Molecular genetic characterization of P. aeruginosa isolated from positive samples of blood cultures and cerebrospinal fluid of patients under 18 years of age from intensive care units of hospitals.

Materials and methods. We conducted a retrospective study of bacteremia and CNS infection cases associated with P. aeruginosa from 2014 to 2021. 24 clinical isolates of P. aeruginosa from positive blood cultures and CSF were analyzed. MICs of antibiotics were determined by serial microdilution in broth. Identification of the genes of carbapenemase was carried out using real-time PCR. Virulence genes were determined by PCR. Population diversity was assessed by MLST.

Results. More than 70% of isolates showed resistance to carbapenem antibiotics. The phenotype of multiple drug resistance had 25% of the isolates. Extreme resistance was shown by 54% of isolates. The detection rate of metallo-β-lactamases (MBL) was 54%. Based on PCR data, 33% of the strains were found to have the ExoU type, and 67% had the ExoS type. According to MLST, 16 genotypes were identified. The structure was dominated by two sequence types ST654 (29%) and ST235 (12.5%). The structure of patients was dominated by children with surgical pathology — 16 cases, and there were eight somatic patients. Fatal outcome was observed in 28% of cases with bacteremia and CNS infection associated with P. aeruginosa.

Conclusion. P. aeruginosa isolates from positive blood cultures and CSF samples are highly resistant to antibiotics; virulence genes were found in all isolates. Strains of high epidemic risk prevailed in the studied sample. More than a quarter of the described clinical cases had an unfavorable outcome.

References

1. Teelucksingh K., Shaw E. Clinical characteristics, appropriateness of empiric antibiotic therapy, and outcome of Pseudomonas aeruginosa bacteremia across multiple community hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 2022; 41(1): 53–62. https://doi.org/10.1007/s10096-021-04342-y

2. Jarlier V., Diaz Högberg L., Heuer O.E., Campos J., Eckmanns T., Giske C.G., et al. Strong correlation between the rates of intrinsically antibiotic-resistant species and the rates of acquired resistance in Gram-negative species causing bacteraemia, EU/EEA, 2016. Euro Surveill. 2019; 24(33): 1800538. https://doi.org/10.2807/1560-7917.ES.2019.24.33.1800538

3. Kozlov R.S., Golub A.V., Dekhnich A.V., Sukhorukova M.V. Antibiotikorezistentnost' gramotritsatel'nykh vozbuditelei oslozhnennykh intraabdominal'nykh infektsii v Rossii. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2015; 17(3): 227–34.

4. Lazareva A.V., Chebotar' I.V., Kryzhanovskaya O.A., Chebotar' V.I., Mayanskii N.A. Pseudomonas aeruginosa: patogennost', patogenez i patologiya. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2015; 17(3): 170–86.

5. Breidenstein E.B., de la Fuente-Núñez C., Hancock R.E. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011; 19(8): 419–26. https://doi.org/10.1016/j.tim.2011.04.005

6. Saima S., Fiaz M., Manzoor M., Zafar R., Ahmed I., Nawaz U., et al. Molecular investigation of antibiotic resistant bacterial strains isolated from wastewater streams in Pakistan. 3 Biotech. 2020; 10(9): 378. https://doi.org/10.1007/s13205-020-02366-3

7. Mokhtari A., Amini K. Genotyping of Pseudomonas aeruginosa strains as a Multidrug Resistant (MDR) bacterium and evaluating the prevalence of Esbls and some virulence factors encoding genes by PFGE and ERIC-PCR methods. Iran J. Pharm. Res. 2019; 18(3): 1580–94. https://doi.org/10.22037/ijpr.2019.1100762

8. Sato H., Frank D.W. ExoU is a potent intracellular phospholipase. Mol. Microbiol. 2004; 53(5): 1279–90. https://doi.org/10.1111/j.1365-2958.2004.04194.x

9. Hardy K.S., Tessmer M.H., Frank D.W., Audia J.P. Perspectives on the Pseudomonas aeruginosa type III secretion system effector ExoU and its subversion of the host innate immune response to infection. Toxins (Basel). 2021; 13(12): 880. https://doi.org/10.3390/toxins13120880

10. Aloush V., Navon-Venezia S., Seigman-Igra Y., Cabili S., Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob. Agents Chemother. 2006; 50(1): 43–8. https://doi.org/10.1128/AAC.50.1.43-48.2006

11. Strateva T., Mitov I., Markova B. Prevalence of virulence genes among Bulgarian nosocomial and cystic fibrosis isolates of Pseudomonas aeruginosa. Braz. J. Microbiol. 2010; 41(3): 588–95. https://doi.org/10.1590/S1517-83822010000300008

12. Jolley K.A., Bray J.E., Maiden M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018; 3: 124. https://doi.org/10.12688/wellcomeopenres.14826.1

13. Wisplinghoff H., Bischoff T., Tallent S.M., Seifert H., Wenzel R.P., Edmond M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004; 39(3): 309–17. https://doi.org/10.1086/421946

14. Sawa T., Shimizu M., Moriyama K., Wiener-Kronish J.P. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. Crit. Care. 2014; 18(6): 668. https://doi.org/10.1186/s13054-014-0668-9

15. Eidel'shtein M.V., Sukhorukova E.A., Skleenova E.Yu., Ivan chik N.V., Shaidulina E.R., Mikotina A.V. i dr. Ustoichivost' k antibiotikam, produktsiya karbapenemaz i genotipy vnutribol'nichnykh shtammov Pseudomonas aeru gi nosa v rossiiskikh bol'nitsakh: rezul'taty mnogotsentrovogo epidemiologicheskogo issledovaniya «MARAFON 2015–2016». Klinicheskaya mikrobiologiya i antimikrobnaya gemoterapiya. 2019; 21(2): 160–70. https://doi.org/10.36488/cmac.2019.2.160-170

16. Pervukhin S.A., Statsenko I.A., Ivanova E.Yu., Pal'mash A.V., Vitkovskaya I.V., Zhidkova O.V. Antibiotikorezistentnost' gramotritsatel'nykh vozbuditelei nozokomial'noi pnevmonii u patsientov otdeleniya reanimatsii i intensivnoi terapii. Klinicheskaya mikrobiologiya i antimikrobnaya khimioterapiya. 2019; 21(1): 62–8. https://doi.org/10.36488/cmac.2019.1.62-68

17. Quillici M.C.B., Resende D.S., Gonçalves I.R., Royer S., Sabino S.S., Almeida V.F., et al. Gram-negative bacilli bacteremia: a 7 year retrospective study in a referral Brazilian tertiary-care teaching hospital. J. Med. Microbiol. 2021; 70(1). https://doi.org/10.1099/jmm.0.001277

18. Tam V.H., Rogers C.A., Chang K.T., Weston J.S., Caeiro J.P., Garey K.W. Impact of Multidrug-Resistant Pseudomonas aeruginosa Bacteremia on Patient Outcomes. Antimicrob. Agents Chemother. 2010; 54(9): 3717–22. https://doi.org/10.1128/aac.00207-10

19. Sawa T., Hamaoka S., Kinoshita M., Kainuma A., Naito Y., Akiyama K., et al. Pseudomonas aeruginosa type III secretory toxin ExoU and its predicted homologs. Toxins (Basel). 2016; 8(11): 307. https://doi.org/10.3390/toxins8110307

20. Zhuo C., Wang L.X., Xiao S.N., Li H.Y., Qiu G.X., Zhong N.S. Clinical significance of virulence-related genes of type III secretion system of Pseudomonas aeruginosa. Zhonghua Shao Shang Za Zhi. 2010; 26(5): 354–9. (in Chinese)

21. Foulkes D.M., McLean K., Haneef A.S., Fernig D.G., Winstanley C., Berry N., et al. Pseudomonas aeruginosa toxin ExoU as a therapeutic target in the treatment of bacterial infections. Microorganisms. 2019; 7(12): 707. https://doi.org/10.3390/microorganisms7120707

22. Springer T.I., Reid T.E., Gies S.L., Feix J.B. Interactions of the effector ExoU from Pseudomonas aeruginosa with short-chain phosphatidylinositides provide insights into ExoU targeting to host membranes. J. Biol. Chem. 2019; 294(50): 19012–21. https://doi.org/10.1074/jbc.RA119.010278

23. Wagener B.M., Hu R., Wu S., Pittet J.F., Ding Q., Che P. The role of Pseudomonas aeruginosa virulence factors in cytoskeletal dysregulation and lung barrier dysfunction. Toxins (Basel). 2021; 13(11): 776. https://doi.org/10.3390/toxins13110776

24. Lomholt J.A., Poulsen K., Kilian M. Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect. Immun. 2001; 69(10): 6284–95. https://doi.org/10.1128/IAI.69.10.6284-6295.2001

25. Hirakata Y., Finlay B.B., Simpson D.A., Kohno S., Kamihira S., Speert D.P. Penetration of clinical isolates of Pseudomonas aeruginosa through MDCK epithelial cell monolayers. J. Infect. Dis. 2000; 181(2): 765–9. https://dx.doi.org/10.1086/315276.

26. Zarei O., Mahmoudi H., Bardbari A.M., Karami P., Ali khani M.Y. Detection of virulence factors and antibiotic resistance pattern of clinical and intensive care unit environmental isolates of Pseudomonas aeruginosa. Infect. Disord. Drug Targets. 2020; 20(5): 758–62. https://doi.org/10.2174/1871526520666191231124717

27. Elmouaden C., Laglaoui A., Ennanei L., Bakkali M., Abid M. Virulence genes and antibiotic resistance of Pseudomonas aeruginosa isolated from patients in the Northwestern of Morocco. J. Infect. Dev. Ctries. 2019; 13(10): 892–8. https://doi.org/10.3855/jidc.1067

28. Del Barrio-Tofiño E., López-Causapé C., Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int. J. Antimicrob. Agents. 2020; 56(6): 106196. https://doi.org/10.1016/j.ijantimicag.2020.106196

29. Edelstein M.V., Skleenova E.N., Shevchenko O.V., D’souza J.W., Tapalski D.V., Azizov I.S., et al. Spread of extensively resistant VIM-2-positive ST235 Pseudomonas aeruginosa in Belarus, Kazakhstan, and Russia: a longitudinal epidemiological and clinical study. Lancet Infect. Dis. 2013; 13(10): 867–76. https://doi.org/10.1016/s1473-3099(13)70168-3

30. Recio R., Villa J., Viedma E., Orellana M.Á., Lora-Tamayo J., Chaves F. Bacteraemia due to extensively drug-resistant Pseudomonas aeruginosa sequence type 235 high-risk clone: Fa cing the perfect storm. Int. J. Antimicrob. Agents. 2018; 52(2): 172–9. https://doi.org/10.1016/j.ijantimicag.2018.03.018

31. Vidal F., Mensa J., Almela M., Martínez J.A., Marco F., Casals C., et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Arch. Intern. Med. 1996; 156(18): 2121–6. https://doi.org/10.1001/archinte.1996.00440170139015

32. Xu H., Cheng J., Yu Q., Li Q., Yi Q., Luo S., et al. Prognostic role of time to positivity of blood culture in children with Pseudomonas aeruginosa bacteremia. BMC Infect. Dis. 2020; 20(1): 665. https://doi.org/10.1186/s12879-020-05257-3

33. Santoro A., Franceschini E., Meschiari M., Menozzi M., Zona S., Venturelli C., et al. Epidemiology and risk factors associated with mortality in consecutive patients with bacterial bloodstream infection: impact of MDR and XDR bacteria. Open Forum Infect. Dis. 2020; 7(11): ofaa461. https://doi.org/10.1093/ofid/ofaa461

34. Pilmis B., Alby-Laurent F., Fasola M.L., Seegers V., Guery R., Guet-Revillet H., et al. Pseudomonas aeruginosa bloodstream infections in children: a 9-year retrospective study. Eur. J. Pediatr. 2020; 179(6): 1247–54. https://doi.org/10.1007/s00431-020-03598-4

35. Barbosa C., Mahrt N., Bunk J., Graßer M., Rosenstiel P., Jansen G., et al. The genomic basis of rapid adaptation to antibiotic combination therapy in Pseudomonas aeruginosa. Mol. Biol. Evol. 2021; 38(2): 449–64. https://doi.org/10.1093/molbev/msaa233

36. Chiong F., Wasef M.S., Liew K.C., Cowan R., Tsai D., Lee Y.P., et al. The impact of infectious diseases consultation on the mana gement and outcomes of Pseudomonas aeruginosa bacte raemia in adults: a retrospective cohort study. BMC Infect. Dis. 2021; 21(1): 671. https://doi.org/10.1186/s12879-021-06372-5