Preview

Журнал микробиологии, эпидемиологии и иммунобиологии

Расширенный поиск

Характеристика вирулентных штаммов Escherichia coli, выделенных от пациентов с урологической инфекцией

https://doi.org/10.36233/0372-9311-134

Полный текст:

Аннотация

Введение. Инфекции мочевыводящих путей (ИМП), вызванные уропатогенными Escherichia coli (UPEC), ежегодно поражают 150 млн человек.
Цель: характеристика внегоспитальных штаммов UPEC, выделенных от пациентов с ИМП в Ярославле в 2016–2017 гг.
Материалы и методы. Чувствительность штаммов UPEC (n = 20) к антимикробным препаратам определяли методом серийных разведений; гены антибиотикорезистентности и вирулентности, филогруппы, О-серогруппы и сиквенс-типы идентифицировали методом ПЦР и полногеномного секвенирования. Вирулентность штаммов изучали на модели личинок Galleria mellonella.
Результаты. Штаммы UPEC отнесены к категориям лекарственно-резистентных (n = 11) и множественно лекарственно-резистентных (n = 9) патогенов. Выявлены гены β-лактамаз blaTEM (n = 10), blaCTX-M (n = 6), интегроны класса 1 (n = 8) и генные кассеты dfrA17-aadA5 (n = 2), dfrA1 (n = 1) и aacA4-cmlA1 (n = 1). Идентифицированы гены вирулентности UPEC: адгезинов fimH, papG, sfaS, focG, afa/draBC, csgA, сидерофоров iroN, fyuA, iutA, факторов противодействия иммунитету макроорганизма ompT и traT, токсинов hlyA, cnf1, usp, транспортёра капсулы kpsMTII, колицина cvaC, островов патогенности I536, II536, III536, IV536, IIJ96 и IICFT073. Определены высоковирулентные и слабовирулентные для личинок G. mellonella штаммы UPEC с LD50 104–105 и 106–107 КО соответственно. Идентифицированы филогруппы A, B1, B2, E и F, серогруппы О2, О4, О6, O9, O11, О15, О18, О25, О75 и O89, известные сиквенс-типы ST14, ST58, ST69, ST73, ST93, ST127, ST131, ST141, ST165, ST297, ST457, ST537, ST744, ST1434 и впервые найденные в данном исследовании ST9239 и ST10102.
Заключение. Выявленное генетическое разнообразие внегоспитальных штаммов UPEC согласуется с мировой тенденцией распространения патогенов человека, обладающих одновременно высокой вирулентностью и множественной лекарственной устойчивостью. Это позволяет проспективно охарактеризовать текущую эпидемиологическую ситуацию, дать прогноз её развития, а также определить оптимальные направления терапии.

Об авторах

П. В. Слукин
Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
Россия

Слукин Павел Владимирович - н.с. лаб. антимикробных препаратов отдела молекулярной микробиологии

Оболенск



Е. И. Асташкин
Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
Россия

Асташкин Евгений Ильич - к.м.н., в.н.с. лаб. антимикробных препаратов отдела молекулярной микробиологии

Оболенск



Е. М. Асланян
Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
Россия

Асланян Елена Мкртичевна - к.б.н., н.с. отдела дезинфектологии

Оболенск



М. Г. Ершова
Инфекционная клиническая больница № 1
Россия

Ершова Марина Геннадьевна - зав. микробиологической лаб.

Ярославль



Е. Д. Полетаева
Инфекционная клиническая больница № 1
Россия

Полетаева Елена Дмитриевна - врач-бактериолог

Ярославль



Э. А. Светоч
Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
Россия

Светоч Эдуард Арсеньевич - д.вет.н., профессор, г.н.с. лаб. антимикробных препаратов отдела молекулярной микробиологии

Оболенск



А. П. Шепелин
Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
Россия

Шепелин Анатолий Прокопьевич - д.б.н., зам. директора по научной и производственной работе

Оболенск



Н. К. Фурсова
Государственный научный центр прикладной микробиологии и биотехнологии Роспотребнадзора
Россия

Фурсова Надежда Константиновна - к.б.н., в.н.с. лаб. антимикробных препаратов отдела молекулярной микробиологии

Оболенск



Список литературы

1. Öztürk R., Murt A. Epidemiology of urological infections: a global burden. World J. Urol. 2020; 38: 2669–79. https://doi.org/10.1007/s00345-019-03071-4

2. Javed S., Mirani Z.A., Pirzada Z.A. Phylogenetic group B2 expressed significant biofilm formation among drug resistant uropathogenic Escherichia coli. Libyan. J. Med. 2021; 16(1): 1845444. https://doi.org/10.1080/19932820.2020.1845444

3. Палагин И.С., Сухорукова М.В., Дехнич А.В., Эйдельштейн М.В., Перепанова Т.С., Козлов Р.С. Антибиотикорезистентность возбудителей внебольничных инфекций мочевых путей в России: результаты многоцентрового исследования «ДАРМИС-2018». Клиническая микробиология и антимикробная химиотерапия. 2019; 21(2): 134–46. https://doi.org/10.36488/cmac.2019.2.134-146

4. Medina M., Castillo-Pino E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol. 2019; 11: 1756287219832172. https://doi.org/10.1177/1756287219832172

5. Zhong Z.X., Cui Z.H., Li X.J., Tang T., Zheng Z.J., Ni W.N., et al. Nitrofurantoin combined with amikacin: a promising alternative strategy for combating MDR uropathogenic Escherichia coli.Front. Cell Infect. Microbiol. 2020; 10: 608547. https://doi.org/10.3389/fcimb.2020.608547

6. Naziri Z., Derakhshandeh A., Soltani Borchaloee A., Poormaleknia M., Azimzadeh N. Treatment failure in urinary tract infections: A warning witness for virulent multi-drug resistant ESBL-producing Escherichia coli. Infect. Drug Resist. 2020; 13: 1839–50. https://doi.org/10.2147/IDR.S256131

7. Sun D.H., Lv D.F., Mi Z.H., Hu L.Q., Huang Y., Gao X., et al. Investigation of antibiotic resistance determinants and virulence factors of uropathogenic Escherichia coli. J. Antibiot. (Tokyo). 2020; 73(5): 314–9. https://doi.org/10.1038/s41429-020-0284-7

8. Казанцев А.В., Осина Н.А., Глинская Т.О., Кошелева О.Н., Максимов Ю.В., Девдариани З.Л. и др. Факторы вирулентности и филогенетическая характеристика уропатогенных штаммов Eschericihia coli, выделенных на территории г. Саратова. Проблемы особо опасных инфекций. 2019; (4): 56–60. https://doi.org/10.21055/0370-1069-2019-4-56-60

9. Nüesch-Inderbinen M.T., Baschera M., Zurfluh K., Hächler H., Nüesch H, Stephan R. Clonal diversity, virulence potential and antimicrobial resistance of Escherichia coli causing community acquired urinary tract infection in Switzerland. Front. Microbiol. 2017; 8: 2334. https://doi.org/10.3389/fmicb.2017.02334

10. Noie Oskouie A., Hasani A., Ahangarzadeh Rezaee M., Soroush Bar Haghi M.H., Hasani A., Soltani E. A relationship between O-serotype, antibiotic susceptibility and biofilm formation in uropathogenic Escherichia coli. Microb. Drug. Resist. 2019; 25(6): 951–8. https://doi.org/10.1089/mdr.2018.0330

11. Baldiris-Avila R., Montes-Robledo A., Buelvas-Montes Y. Phylogenetic classification, biofilm-forming capacity, virulence factors, and antimicrobial resistance in uropathogenic Escherichia coli (UPEC). Curr. Microbiol. 2020; 77(11): 3361–70. https://doi.org/10.1007/s00284-020-02173-2

12. Кузнецова М.В., Проворова С.В., Кубарев О.Г., Юдин Д.П., Каримова Н.В., Баяндина Н.В. и др. Сравнительная характеристика штаммов уропатогенной Escherichia coli, выделенных в условиях поликлиники и стационара. Урология. 2018; (6): 37–44. https://doi.org/10.18565/urology.2018.6.37-44

13. Аминева Э.М., Бахарева Л.И. Характеристика Escherichia coli, выделенной из мочи пациентов при различных клинических ситуациях. Вестник Челябинского государственного университета. 2013; (7): 51–2.

14. Казанцев А.В. Определение принадлежности к О-серогруппе по результатам молекулярно-генетического анализа уропатогенных штаммов Escherichia coli, выделенных от пациентов, находящихся на госпитализации в урологических отделениях на территории г. Саратов, с симптомами пиелонефрита и цистита. В кн.: Материалы всероссийской научно-практической конференции с международным участием «Аспирантские чтения – 2018». Самара; 2018.

15. Alghoribi M.F., Gibreel T.M., Dodgson A.R., Beatson S.A., Upton M. Galleria mellonella infection model demonstrates high lethality of ST69 and ST127 uropathogenic E. coli. PLoS One. 2014; 9(7): e101547. https://doi.org/10.1371/journal.pone.0101547

16. Tsai C.J., Loh J.M., Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016; 7(3): 214–29. https://doi.org/10.1080/21505594.2015.1135289

17. Magiorakos A.P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012; 18(3): 268–81. https://doi.org/10.1111/j.1469-0691.2011.03570.x

18. Кузина Е.С., Асташкин Е.И., Лев А.И., Агеева Е.Н., Карцев Н.Н., Светоч Э.А. и др. Интегроны классов 1 и 2 в госпитальных штаммах грам-отрицательных бактерий, выделенных в Москве и регионах Российской Федерации. Молекулярная генетика, микробиология и вирусология. 2019; 37(1): 17–24. https://doi.org/10.17116/molgen20193701117

19. Sabaté M., Moreno E., Pérez T., Andreu A., Prats G. Pathogenicity island markers in commensal and uropathogenic Escherichia coli isolates. Clin. Microbiol. Infect. 2006; 12(9): 880–6. https://doi.org/10.1111/j.1469-0691.2006.01461.x

20. Ашмарин И.П., Воробьев A.A. Статистические методы в микробиологических исследованиях. Ленинград: Наука; 1962.

21. Clermont O., Christenson J.K., Denamur E., Gordon D.M. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013; 5(1): 58–65. https://doi.org/10.1111/1758-2229.12019

22. Iguchi A., Iyoda S., Seto K., Morita-Ishihara T., Scheutz F., Ohnishi M., et al. Escherichia coli O-genotyping PCR: a comprehensive and practical platform for molecular O serogrouping. J. Clin. Microbiol. 2015; 53(8): 2427–32. https://doi.org/10.1128/JCM.00321-15

23. Alikhan N.F., Zhou Z., Sergeant M.J., Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet. 2018; 14(4): e1007261. https://doi.org/10.1371/journal.pgen.1007261

24. Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012; 19(5): 455–77. https://doi.org/10.1089/cmb.2012.0021

25. Angiuoli S.V., Gussman A., Klimke W., Cochrane G., Field D., Garrity G., et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS. 2008; 12(2): 137–41. https://doi.org/10.1089/omi.2008.0017

26. Edowik Y., Caspari T., Williams H.M. The amino acid changes T55A, A273P and R277C in the beta-lactamase CTX-M-14 render E. coli resistant to the antibiotic nitrofurantoin, a first-line treatment of urinary tract infections. Microorganisms. 2020; 8(12): 1983. https://doi.org/10.3390/microorganisms8121983

27. Kudinha T., Kong F., Johnson J.R., Andrew S.D., Anderson P., Gilbert G.L. Multiplex PCR-based reverse line blot assay for simultaneous detection of 22 virulence genes in uropathogenic Escherichia coli. Appl. Environ. Microbiol. 2012; 78(4): 1198–202. https://doi.org/10.1128/AEM.06921-11

28. Yu H., Qu F., Shan B., Huang B., Jia W., Chen C., et al. Detection of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae from different hospitals in China. Antimicrob. Agents Chemother. 2016; 60(8): 5033–5. https://doi.org/10.1128/AAC.00440-16

29. Ageevets V., Lazareva I., Mrugova T., Gostev V., Lobzin Y., Sidorenko S. IncX4 plasmids harbouring mcr-1 genes: further dissemination. J. Glob. Antimicrob. Resist. 2019; 18: 166–7. https://doi.org/10.1016/j.jgar.2019.07.002


Рецензия

Просмотров: 61


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0372-9311 (Print)
ISSN 2686-7613 (Online)