Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98: 627-638

Применение секвенирования следующего поколения для исследования двойной ВИЧ-инфекции

Лаповок И. А., Барышев П. Б., Салеева Д. В., Кириченко А. А., Шлыкова (Мурзакова) А. В., Киреев Д. Е.

https://doi.org/10.36233/0372-9311-153

Аннотация

Введение. Целью исследования был сравнительный анализ эффективности выявления и подтверждения двойной ВИЧ-инфекции с применением классического популяционного секвенирования (ПС) и секвенирования следующего поколения (NGS) для фрагмента гена pol ВИЧ-1, кодирующего протеазу и часть обратной транскриптазы (позиции 2253–3368).
Материалы и методы. Исследованы модельные образцы межсубтиповой двойной ВИЧ-инфекции, содержащие вирусы ВИЧ-1 субтипа B, субсубтипа A6 и рекомбинантной формы CRF63_02A1. Вирусы смешивали попарно в соотношении от 10 до 90% для создания 3 групп модельных образцов: CRF63vsB, CRF63vsA6 и A6vsB. Нуклеотидные последовательности, полученные технологиями ПС и NGS, с порогами чувствительности к минорным вариантам вируса 5, 10, 15 и 20% (NGS5–NGS20 соответственно) использовали для определения величин индекса вырожденности (DB) и индекса синонимичности (SM). Фрагмент исследуемого региона (позиции 2725–2981) служил для анализа операционных таксономических единиц.
Результаты. Применение NGS5 оказалось наиболее эффективным для выявления двойной ВИЧ-инфекции в модельных образцах. Было обнаружено статистически достоверное (p < 0,01) увеличение DB- и SM-индексов для NGS5 по сравнению с ПС. Это позволило с помощью NGS5 выявить двойную ВИЧ-инфекцию в 25 модельных образцах из 27, в то время как ПС позволяло выявлять её лишь в 15 образцах. Анализ операционных таксономических единиц подтвердил двойную ВИЧ-инфекцию во всех группах модельных образцов.
Обсуждение. Эффективность выявления и подтверждения двойной ВИЧ-инфекции зависит как от доли каждого вируса в образце, так и от генетических особенностей данных вирусов. Заключение. Внедрение в рутинную практику генетического анализа технологии NGS позволит не только более эффективно выявлять генетические особенности инфекционных агентов, но и проводить более глубокий анализ эпидемиологической ситуации.

Список литературы

1. Лаповок И.А., Лопатухин А.Э., Киреев Д.Е. Двойная ВИЧ-инфекция: эпидемиология, клиническая значимость и диагностика. Инфекционные болезни. 2019; 17(2): 87–93. https://doi.org/10.20953/1729-9225-2019-2-87-93

2. Cornelissen M., Jurriaans S., Kozaczynska K., Prins J.M., Hamidjaja R.A., Zorgdrager F., et al. Routine HIV-1 genotyping as a tool to identify dual infections. AIDS. 2007; 21(7): 807–11. https://doi.org/10.1097/QAD.0b013e3280f3c08a

3. Soares de Oliveira A.C., Pessoa de Farias R., da Costa A.C., Melillo Sauer M., Bassichetto K.C., Santos Oliveira S.M., et al. Frequency of subtype B and F1 dual infection in HIV-1 positive, Brazilian men who have sex with men. Virol. J. 2012; 9: 223. https://doi.org/10.1186/1743-422X-9-223

4. Redd A.D., Ssemwanga D., Vandepitte J., Wendel S.K., Ndembi N., Bukenya J., et al. The rates of HIV-1 superinfection and primary HIV-1 infection are similar in female sex workers in Uganda. AIDS. 2014; 28(14): 2147–52. https://doi.org/10.1097/QAD.0000000000000365

5. Luan H., Han X., Yu X., An M., Zhang H., Zhao B., et al. Dual infection contributes to rapid disease progression in men who have sex with men in China. J. Acquir. Immune Defic. Syndr. 2017; 75(4): 480–7. https://doi.org/10.1097/qai.0000000000001420

6. Лаповок И.А., Салеева Д.В., Кириченко А.А., Мурзакова А.В., Лопатухин А.Э., Киреев Д.Е. Исследование частоты встречаемости двойной ВИЧ-инфекции в России. Инфекционные болезни. 2020; 18(4): 138–48. https://doi.org/10.20953/1729-9225-2020-4-138-148

7. Gao Y., Tian W., Han X., Gao F. Immunological and virological characteristics of human immunodeficiency virus type 1 superinfection: implications in vaccine design. Front. Med. 2017; 11(4): 480–9. https://doi.org/10.1007/s11684-017-0594-8

8. Pacold M., Smith D., Little S., Cheng P.M., Jordan P., Ignacio C., et al. Comparison of methods to detect HIV dual infection. AIDS Res. Hum. Retroviruses. 2010; 26(12): 1291–8. https://doi.org/10.1089/aid.2010.0042

9. Casado C., Pernas M., Rava M., Ayerdi O., Vera M., Alenda R., et al. High-risk sexual practices contribute to HIV-1 double infection among men who have sex with men in Madrid. AIDS Res. Hum. Retroviruses. 2020; 36(11): 896–904. https://doi.org/10.1089/AID.2020.0068

10. Popescu B., Banica L., Nicolae I., Radu E., Niculescu I., Abagiu A., et al. NGS combined with phylogenetic analysis to detect HIV-1 dual infection in Romanian people who inject drugs. Microbes Infect. 2018; 20(5): 308–11. https://doi.org/10.1016/j.micinf.2018.03.004

11. Kireev D.E., Lopatukhin A.E., Murzakova A.V., Pimkina E.V., Speranskaya A.S., Neverov A.D., et al. Evaluating the accuracy and sensitivity of detecting minority HIV-1 populations by Illumina next-generation sequencing. J. Virol. Methods. 2018; 261: 40–5. https://doi.org/10.1016/j.jviromet.2018.08.001

12. Yerly S., Jost S., Monnat M., Telenti A., Cavassini M., Chave J.P., et al. HIV-1 co/super-infection in intravenous drug users. AIDS. 2004; 18(10): 1413–21. https://doi.org/10.1097/01.aids.0000131330.28762.0c

13. Ring K., Muir D., Mackie N., Bailey A.C. HIV-1 superinfection in a patient with known HIV-2 – A case report. Int. J. STD AIDS. 2020; 31(3): 271–3. https://doi.org/10.1177/0956462420901969

14. Wagner G.A.., Pacold M.E., Kosakovsky Pond S.L., Caballero G., Chaillon A., Rudolph A.E., et al. Incidence and prevalence of intrasubtype HIV-1 dual infection in at-risk men in the United States. J. Infect. Dis. 2014; 209(7): 1032–8. https://doi.org/10.1093/infdis/jit633

15. Van der Kuyl A.C., Cornelissen M. Identifying HIV-1 dual infections. Retrovirology. 2007; 4: 67. https://doi.org/10.1186/1742-4690-4-67

16. Inzaule S.C., Hamers R.L., Noguera-Julian M., Casadellà M., Parera M., Kityo C., et al. Clinically relevant thresholds for ultrasensitive HIV drug resistance testing: a multi-country nested case-control study. Lancet HIV. 2018; 5(11): e638–46. https://doi.org/10.1016/S2352-3018(18)30177-2

17. Кириченко А.А., Свиридова А.А., Лопатухин А.Э., Мурзакова А.В., Лаповок И.А., Гоптарь И.А. и др. Корреляция результатов высокопроизводительного и классического методов секвенирования при анализе лекарственной устойчивости вируса иммунодефицита человека у пациентов на фоне неэффективной антиретровирусной терапии. Инфекционные болезни. 2019; 17(2): 12–9. https://doi.org/10.20953/1729-9225-2019-2-12-19

18. Trabaud M.A., Icard V., Ramière C., Tardy J.C., Scholtes C., André P. Comparison of HIV-1 drug-resistance genotyping by ultra-deep sequencing and sanger sequencing using clinical samples. J. Med. Virol. 2017; 89(11): 1912–9. https://doi.org/10.1002/jmv.24872

19. Герасимов А.Н. Медицинская статистика: учебное пособие. М.: МИА; 2007.

20. Foley B.T., Leitner T., Paraskevis D., Peeters M. Primate immunodeficiency virus classification and nomenclature: Review. Infect. Genet. Evol. 2016; 46: 150–8. https://doi.org/10.1016/j.meegid.2016.10.018

21. Лаповок И.А., Лопатухин А.Э., Киреев Д.Е., Казеннова Е.В., Лебедев А.В., Бобкова М.Р. и соавт. Молекулярно-эпидемиологический анализ вариантов ВИЧ-1, циркулировавших в России в 1987–2015 гг. Терапевтический архив. 2017; 89(11): 44–9. https://doi.org/10.17116/terarkh2017891144-49

22. Baryshev P., Bogachev V., Gashnikova N. HIV-1 genetic diversity in Russia: CRF63_02A1, a new HIV type 1 genetic variant spreading in Siberia. AIDS Res. Hum. Retroviruses. 2014; 30(6): 592–7. https://doi.org/10.1089/AID.2013.0196

23. Holmes H., Davis C., Heath A. Development of the 1st International Reference Panel for HIV-1 RNA genotypes for use in nucleic acid-based techniques. J. Virol. Methods. 2008; 154(1-2): 86–91. https://doi.org/10.1016/j.jviromet.2008.08.014

Journal of microbiology, epidemiology and immunobiology. 2021; 98: 627-638

Application of next generation sequencing in dual HIV infection studies

Lapovok I. A., Baryshev P. B., Saleeva D. V., Kirichenko A. A., Shlykova (Murzakova) A. V., Kireev D. E.

https://doi.org/10.36233/0372-9311-153

Abstract

Introduction. The aim of the study was to use comparative analysis for assessing efficiency of detection and confirmation of dual HIV infection, using conventional population sequencing (PS) and next generation sequencing (NGS) for an HIV-1 pol gene fragment, which encompasses protease and partially reverse transcriptase (positions 2253–3368).
Materials and methods. The study was performed on intersubtype dual HIV infection model samples containing viruses of HIV-1 subtype B, sub-subtype A6 and recombinant form CRF63_02A1. Viruses were mixed pairwise in proportions from 10 to 90% to obtain 3 groups of model samples: CRF63vsB, CRF63vsA6, and A6vsB. The nucleotide sequences obtained by using PS and NGS technologies having 5, 10, 15, and 20% sensitivity thresholds for minor virus variants (NGS5–NGS20, respectively) were used to estimate the number of degenerate nucleotides or the degenerate base (DB) count and the number of synonymous mutations (SM) or the SM count. The fragment of the studied region (positions 2725–2981) was used for the analysis of operational taxonomic units.
Results. The application of NGS5 proved highly efficient for detection of dual HIV infection in the model samples. The statistically significant (p < 0.01) increase in DB and SM counts was demonstrated by NGS5 compared to PS. As a result, NGS5 helped detect dual HIV infection in 25 out of 27 model samples, while with PS it was detected only in 15 samples. The analysis of operational taxonomic units confirmed dual HIV infection in all the groups of model samples.
Discussion. The efficiency of detection and confirmation of dual HIV infection depends both on the content of each virus in the sample and on genetic characteristics of these viruses. Conclusion. Using NGS genetic testing in routine practice will be instrumental for efficient identification of genetic characteristics of infectious agents and for thorough analysis of the epidemiological situation.

References

1. Lapovok I.A., Lopatukhin A.E., Kireev D.E. Dvoinaya VICh-infektsiya: epidemiologiya, klinicheskaya znachimost' i diagnostika. Infektsionnye bolezni. 2019; 17(2): 87–93. https://doi.org/10.20953/1729-9225-2019-2-87-93

2. Cornelissen M., Jurriaans S., Kozaczynska K., Prins J.M., Hamidjaja R.A., Zorgdrager F., et al. Routine HIV-1 genotyping as a tool to identify dual infections. AIDS. 2007; 21(7): 807–11. https://doi.org/10.1097/QAD.0b013e3280f3c08a

3. Soares de Oliveira A.C., Pessoa de Farias R., da Costa A.C., Melillo Sauer M., Bassichetto K.C., Santos Oliveira S.M., et al. Frequency of subtype B and F1 dual infection in HIV-1 positive, Brazilian men who have sex with men. Virol. J. 2012; 9: 223. https://doi.org/10.1186/1743-422X-9-223

4. Redd A.D., Ssemwanga D., Vandepitte J., Wendel S.K., Ndembi N., Bukenya J., et al. The rates of HIV-1 superinfection and primary HIV-1 infection are similar in female sex workers in Uganda. AIDS. 2014; 28(14): 2147–52. https://doi.org/10.1097/QAD.0000000000000365

5. Luan H., Han X., Yu X., An M., Zhang H., Zhao B., et al. Dual infection contributes to rapid disease progression in men who have sex with men in China. J. Acquir. Immune Defic. Syndr. 2017; 75(4): 480–7. https://doi.org/10.1097/qai.0000000000001420

6. Lapovok I.A., Saleeva D.V., Kirichenko A.A., Murzakova A.V., Lopatukhin A.E., Kireev D.E. Issledovanie chastoty vstrechaemosti dvoinoi VICh-infektsii v Rossii. Infektsionnye bolezni. 2020; 18(4): 138–48. https://doi.org/10.20953/1729-9225-2020-4-138-148

7. Gao Y., Tian W., Han X., Gao F. Immunological and virological characteristics of human immunodeficiency virus type 1 superinfection: implications in vaccine design. Front. Med. 2017; 11(4): 480–9. https://doi.org/10.1007/s11684-017-0594-8

8. Pacold M., Smith D., Little S., Cheng P.M., Jordan P., Ignacio C., et al. Comparison of methods to detect HIV dual infection. AIDS Res. Hum. Retroviruses. 2010; 26(12): 1291–8. https://doi.org/10.1089/aid.2010.0042

9. Casado C., Pernas M., Rava M., Ayerdi O., Vera M., Alenda R., et al. High-risk sexual practices contribute to HIV-1 double infection among men who have sex with men in Madrid. AIDS Res. Hum. Retroviruses. 2020; 36(11): 896–904. https://doi.org/10.1089/AID.2020.0068

10. Popescu B., Banica L., Nicolae I., Radu E., Niculescu I., Abagiu A., et al. NGS combined with phylogenetic analysis to detect HIV-1 dual infection in Romanian people who inject drugs. Microbes Infect. 2018; 20(5): 308–11. https://doi.org/10.1016/j.micinf.2018.03.004

11. Kireev D.E., Lopatukhin A.E., Murzakova A.V., Pimkina E.V., Speranskaya A.S., Neverov A.D., et al. Evaluating the accuracy and sensitivity of detecting minority HIV-1 populations by Illumina next-generation sequencing. J. Virol. Methods. 2018; 261: 40–5. https://doi.org/10.1016/j.jviromet.2018.08.001

12. Yerly S., Jost S., Monnat M., Telenti A., Cavassini M., Chave J.P., et al. HIV-1 co/super-infection in intravenous drug users. AIDS. 2004; 18(10): 1413–21. https://doi.org/10.1097/01.aids.0000131330.28762.0c

13. Ring K., Muir D., Mackie N., Bailey A.C. HIV-1 superinfection in a patient with known HIV-2 – A case report. Int. J. STD AIDS. 2020; 31(3): 271–3. https://doi.org/10.1177/0956462420901969

14. Wagner G.A.., Pacold M.E., Kosakovsky Pond S.L., Caballero G., Chaillon A., Rudolph A.E., et al. Incidence and prevalence of intrasubtype HIV-1 dual infection in at-risk men in the United States. J. Infect. Dis. 2014; 209(7): 1032–8. https://doi.org/10.1093/infdis/jit633

15. Van der Kuyl A.C., Cornelissen M. Identifying HIV-1 dual infections. Retrovirology. 2007; 4: 67. https://doi.org/10.1186/1742-4690-4-67

16. Inzaule S.C., Hamers R.L., Noguera-Julian M., Casadellà M., Parera M., Kityo C., et al. Clinically relevant thresholds for ultrasensitive HIV drug resistance testing: a multi-country nested case-control study. Lancet HIV. 2018; 5(11): e638–46. https://doi.org/10.1016/S2352-3018(18)30177-2

17. Kirichenko A.A., Sviridova A.A., Lopatukhin A.E., Murzakova A.V., Lapovok I.A., Goptar' I.A. i dr. Korrelyatsiya rezul'tatov vysokoproizvoditel'nogo i klassicheskogo metodov sekvenirovaniya pri analize lekarstvennoi ustoichivosti virusa immunodefitsita cheloveka u patsientov na fone neeffektivnoi antiretrovirusnoi terapii. Infektsionnye bolezni. 2019; 17(2): 12–9. https://doi.org/10.20953/1729-9225-2019-2-12-19

18. Trabaud M.A., Icard V., Ramière C., Tardy J.C., Scholtes C., André P. Comparison of HIV-1 drug-resistance genotyping by ultra-deep sequencing and sanger sequencing using clinical samples. J. Med. Virol. 2017; 89(11): 1912–9. https://doi.org/10.1002/jmv.24872

19. Gerasimov A.N. Meditsinskaya statistika: uchebnoe posobie. M.: MIA; 2007.

20. Foley B.T., Leitner T., Paraskevis D., Peeters M. Primate immunodeficiency virus classification and nomenclature: Review. Infect. Genet. Evol. 2016; 46: 150–8. https://doi.org/10.1016/j.meegid.2016.10.018

21. Lapovok I.A., Lopatukhin A.E., Kireev D.E., Kazennova E.V., Lebedev A.V., Bobkova M.R. i soavt. Molekulyarno-epidemiologicheskii analiz variantov VICh-1, tsirkulirovavshikh v Rossii v 1987–2015 gg. Terapevticheskii arkhiv. 2017; 89(11): 44–9. https://doi.org/10.17116/terarkh2017891144-49

22. Baryshev P., Bogachev V., Gashnikova N. HIV-1 genetic diversity in Russia: CRF63_02A1, a new HIV type 1 genetic variant spreading in Siberia. AIDS Res. Hum. Retroviruses. 2014; 30(6): 592–7. https://doi.org/10.1089/AID.2013.0196

23. Holmes H., Davis C., Heath A. Development of the 1st International Reference Panel for HIV-1 RNA genotypes for use in nucleic acid-based techniques. J. Virol. Methods. 2008; 154(1-2): 86–91. https://doi.org/10.1016/j.jviromet.2008.08.014