Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98: 579-587

Применение штамма MVA вируса вакцины для создания рекомбинантных векторных вакцин против актуальных арбовирусных инфекций

Стовба Л. Ф., Кротков В. Т., Мельников С. А., Павельев Д. И., Черникова Н. К., Борисевич С. В.

https://doi.org/10.36233/0372-9311-102

Аннотация

Эпидемические трансмиссивные вирусные инфекции представляют собой серьёзную угрозу для здравоохранения многих стран. Для большинства из них отсутствуют средства специфической профилактики. В настоящее время одним из перспективных направлений борьбы с вирусными лихорадками является создание векторных вакцин, в том числе на основе штамма MVA, которые практически не вызывают побочных реакций. Безопасность штамма MVA и отсутствие реактогенности рекомбинантных вакцин, разработанных на его основе, показана в многочисленных клинических испытаниях.
В статье рассматриваются результаты испытаний подобных профилактических препаратов против вирусных лихорадок: Крымской-Конго геморрагической лихорадки, лихорадки долины Рифт, жёлтой лихорадки, лихорадок Чикунгунья и Зика.
Их иммуногенность оценивалась на иммунокомпетентных и иммунодефицитных белых мышах, а протективная эффективность — на иммунодефицитных белых мышах, дефектных по α-, β-рецепторам интерферона, на которых моделируют эту инфекцию. Почти все разработанные рекомбинантные вакцины, экспрессирующие иммунодоминантные антигены, обеспечивали 100% защитную эффективность. Показано, что, хотя вакцина, экспрессирующая структурные белки вируса Зика, индуцировала антитела против специфических вирусных гликопротеинов, её применение может вызывать опасность для профилактики лихорадки Зика у лиц, переболевших лихорадкой денге, в связи с наличием феномена антителозависимого усиления инфекции при заболеваниях, вызванных антигенно-родственными флавивирусами. По этой причине для иммунизации против лихорадки Зика разработана вакцина, экспрессирующая неструктурный белок NS-1.
Сконструированная на основе штамма MVA вакцина против жёлтой лихорадки обладала такой же иммуногенностью, что и коммерческая вакцина 17D, однако по уровню безопасности превосходила её.

Список литературы

1. Meseda C.A., Atukorale V., Kuhn J., Schmeisser F., Weir J.P. Percutaneous vaccination as an effective method of delivery of MVA and MVA-vectored vaccines. PLoS One. 2016; 11(2): e149364. https://doi.org/10/1371/journal.pone0149364

2. Volz A., Sutter G. Modified Vaccinia virus Ankara: History, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017; 97: 187-243. https://doi.org/10.1016/bs.aivir.2016.07.001

3. Melamed S., Israely T., Paran N. Challenges and achievements in prevention and treatment of smallpox. Vaccines (Basel). 2018; 6(1): 8. https://doi.org/10.3390/vaccines6010008

4. Frey S.E., Winokur P.L., Salata R.A., El-Kamary S.S., Turley C.B., Walter E.B., et al. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for post event scenario. Vaccine. 2013; 31(29): 3025-33. https://doi.org/10.1016/j.vaccine.2013.04.050

5. Mair A., Stickl H., Muller H.K., Danner K., Singer H. The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author’s transl). Zentralbl Bakteriol. B. 1978; 167(5-6): 375-90. (in German)

6. Von Krempelhuber B., Vollmar J., Pokorny R., Rapp P., Wullf N., Petzold B., et al. A randomized, double-blind, dose-finding phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IM-VAMUNE®. Vaccine. 2010; 28(5): 1209-16. https://doi.org/10.1016/j.vaccine.2009.11.030

7. Zitzman-Roth E-M., von Sonnenburg F., de la Motte S., Arndtz-Wiedemann N., von Krempelhuber A., Urbler N., et al. Cardiac safety of modified vaccinia Ankara for vaccination against smallpox in a young, healthy study population. PLoS One. 2015; 10(4): e0122653. https://doi.org/10.1371//journal.pone.0122653

8. Greenberg R.N., Hay C.M., Stapleton J.T., Marbury T.C., Wagner E., Kreitmeir E., et al. A randomized, double-blind, placebo-controlled phase II trial investigating the safety and immunogenicity of modified vaccinia Ankara smallpox vaccine (MVA-BN®) in 56-80-year-old subjects. PLoS One. 2016; 11(6): e0157335. https://doi.org/10/1371/journal.pone.0157335

9. Greenberg R.N., Hurley Y., Dinh V.V., Mraz S., Vera J.G., von Bredow D., et al. A multicenter, open-label, controlled phase II study to evaluate safety and immunogenicity of MVA smallpox vaccine (IMVAMUNE) in 18-40 year old subjects with diagnosed atopic dermatitis. PLoS One. 2015; 10(10): e0138348. https://doi.org/10/1371/journal.pone.0138348

10. Sander C.R., Pathan A.A., Beveridge N.E., Poulton I., Minassian A., Alder N., et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85, in Mycobacterium tuberculosis-infected individuals. Am. J. Respir. Crit. Care Med. 2009; 179(8): 724-33. https://doi.org/10.1164/rccm.200809-1486oc

11. Greenberg R.N., Overton E.T., Haas D.W., Frank I., Goldman M., von Krempelhuber A., et al. Safety, immunogenicity and surrogate markers of clinical efficacy for modified vaccinia Ankara as a smallpox vaccine in HIV-infected subjects. J. Infect. Dis. 2013; 207(5): 749-58. https://doi.org/10.1093/infdis/jis753

12. Chumakov M.P. A new disease — Crimean hemorrhagic fever. In: Sokoljv A.A., Chumakov M.P., Kolachev A.A., eds. Crimean Hemorrhagic Fever (Acute Infectious Capillary Toxicosis). Simferopol; 13-4.

13. Casals J. Antigenic similarity between the virus causing Crimean hemorrhagic fever and Congo virus. Proc. Soc. Exp. Biol. Med. 1969; 131(1): 233-6. https://doi.org/10.3181/00379727-131-33847

14. Buttigieg K.R., Dowall S.D., Findlay-Wilson S., Miloszewska A., Rayner E., Hewson R., et al. A novel vaccine against Crimean-Congo hemorrhagic fever protects 100% of animals against lethal challenge in a mouse model. PLoS One. 2014; 9(3): e91516. https://doi.org/10/1371/journal.pone.0091516

15. Papa A., Papadimitriou E., Christova I. The Bulgarian vaccine Crimean-Congo hemorrhagic fever virus strain. Scand. J. Infect. Dis. 2011; 43(3): 225-9. https://doi.org/10.3109/00365548.2010.540036

16. Spik K., Shurtleff A., Guttieri M.C., McElroy A.K., Hooper J.W., Schmaljohn C., et al. Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick borne encephalitis virus, Hantaan virus, and. Vaccine. 2006; 24(21): 4657-66. https://doi.org/10.1016/j.vaccine2005.08.34

17. Ghiasi S.M., Salmanian A.H., Chinicar S., Zakeri S. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus. Clin. Vaccine Immunol. 2011; 18(12): 2031-7. https://doi.org/10.1128CVI05352-11

18. Bente D.A., Alimonti J.B., Shich W.J., Camus G., Stroher U. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virusin a STAT-1 knockout mouse model. J. Virol. 2010; 84(21): 11089-100. https://doi.org/10.1128/jvi.01383-10

19. Dowall S.D., Graham V.A, Rayner E., Hunter L, Watson R, Taylor I., et al. Protective effects of modified vaccinia Ankara-based vaccine candidate against Crimean-Congo hemorrhagic require both cellular and humoral responses. PLoS One. 2016; 11(6): e0156637. https://doi.org/10/1371/journal.pone.0156637

20. Dowall S.D., Buttigieg K.R., Findlay-Wilson S.J.D., Rayner E., Miloszewska A., Graham V.A., et al. Crimean-Congo hemorrhagic fever (CCHV) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease. Hum. Vaccin. Immunother. 2016; 12(2): 2519-27. https://doi.org/10.1080/21645515.2015.1078045

21. Boshra H., Lorenzo G., Rodriguez F., Brun A.A. DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNAR(-/-) mice upon lethal virus challenge. Vaccine. 2011; 29(27): p4469-75. https://doi.org/10.1016/j.vaccine2011.04.043

22. Dungu B., Louw I., Lubisi A., Hunter P., von Tcichman B.F., Bouloy M. Evaluation of the efficacy and safety of the Rift Valley fever clone 13 vaccine in sheep. Vaccine. 2010; 28(29): 4581-7. https://doi.org/10.1016/j.vaccine.2010.04.085

23. The Subcommittee on Arbovirus Laboratory Safety of the American Committee on Arthropod-Borne Viruses. Laboratory safety for arboviruses and certain other viruses of vertebrates. Am. J. Trop. Med. Hyg. 1980; 29(6) 1359-81. https://doi.org/10.4269/ajtmh.1980.29.1359

24. Lopez-Gil E., Lorenzo G., Hevia E., Borrego B., Eiden M., Groschup M., et al. A single immunization with MVA expressing immune-competent GnGc glycoproteins promotes epitope-specific CD8+-T cell activation and protects mice against a lethal RVFV infection. PLoS Negl. Trop. Dis. 2013; 7(7): e2309. https://doi.org/10/1371/journal.pntd.0002309

25. WHO. Yellow fever. Yellow fever. Fact sheet. No 100; 2009. Available at: https://who.int/mediacentre/factsheets/fs100/en/

26. Lindsey N.P, Schroeder B.A., Miller E.R., Braun M.M., Hinckley A.F., Marano N., et al. Adverse event reports following yellow fever vaccination. Vaccine. 2008; 26(48): 6077-82. https://doi.org/10.1016/j.vaccine.2008.09.009

27. Schafer B., Holzer G., Joachimsthler A., Coulibaly S., Schwendinger M., Crove B.A., et al. Pre-clinical efficacy and safety of experimental vaccines based on non-replication vaccinia vectors against Yellow fever. PLoS One. 2011; 6(9): e24505. https://doi.org/10/1371/journal.pone.0024505

28. Burt E.J., Rolph M.S., Rulli N.E., Mahalingam S., Heise M.T. Chikungunya re-emerging virus. Lancet. 2012; 379(9816): 662-71. https//doi.org/10/S0140-6736(11)6028-x

29. Weger-Lucarelli J., Chu H., Aliota M.T., Partidos C.D., Osorio J.E. A novel MVA vectored Chikungunya virus vaccine elicits protective immunity in mice. PLoS Negl. Trop. Dis. 2014; 8(7): e2970. https://doi.org/10.1371/journal.pntd.0002970

30. Garcia-Arriza J., Cepeda V., Hallengard D., Sorzano C., Kummerer B.M., Liljestom P., et al. A novel poxvirus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against Chikungunya infection. J. Virol. 2014; 88(6): 3527-47. https://doi.org/10.1128/jvi.03418-13

31. Van den Doel P., Volz A., Roose J.M., Sewbalaksing V.D., Pijlman G., van Middelkoop I., et al. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge. PLoS Negl. Trop. Dis. 2014; 8(9): 3101. https://doi.org/10/1371/journal.pntd.0003101

32. Weber C., Buchner S.M., Schnierle S. A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice. PLoS Negl. Trop. Dis. 2015; 9(4): e0003684. https://doi.org/10/1371/journal.pntd.0003684

33. Roques P., Ljungberg K., Kummerer B.M., Gosse L., Dereuddre-Bosquet N., Tchitchec N., et al. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus. JCI Insight. 2017; 2(6): e83527. https://doi.org/10.1172/jci.insight.83527

34. Brault A.C., Domi A., McDonald E.M., Talmi-Frank D., Mc-Curley N., Basun R., et al. A Zika vaccine targeting NS1 protein immunocompetent adult mice in a lethal model. Sci. Rep. 2017; 7(1): 14769. https://doi.org/10/1038/s41598-017-15039-8

35. Perez P., Marin M.Q., Lazaro-Frias A., de Oya N.J., Blazguez A.B., Escribano-Romero E., et al. A vaccine based on a modified vaccinia virus Ankara vector expressing Zika virus ructural proteins controls Zika virus replication in mice. Sci. Rep. 2018; 8(1): 17385. https://doi.org/10/1038/s41598-018-35724-6

36. Eudaileu J., Dennis M.L., Parker M.E., Phillips B.L., Huffman T.N., Bay C.P., et al. Maternal HIV-1 Env vaccination for systemic and breast milk immunity to prevent oral SHIV acquisition in infant macaques. mSphere. 2018; 3(1): e00505-17. https://doi.org/10.1128/msphere.00505-17

37. Beatty P.R., Puerta-Guardo H., Killingbeck S.S., Glasner D.R., Hopkins K., Harris E., et al. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl. Med. 2015; 7(304): 304ra141. https://doi.org/10.1126/scitranslmed.aaa3787

38. Wan S.W., Lu Y.T., Huang C.H., Lin C.F., Anderson R., Liu H.S., et al. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One. 2014; 9(3): e92495. https://doi.org/10.1371/journal.pone.0092495

39. Kawiecki A.V., Christofferson R.C. Zika virus-induced antibody response enhances dengue virus serotype 2 replication in vitro. J. Infect. Dis. 2016; 214(6): 1357-60. https://doi.org/10.1093/infdis/jiw377

Journal of microbiology, epidemiology and immunobiology. 2021; 98: 579-587

Using the vaccinia virus MVA strain for developing recombinant vector vaccines against current arboviral infections

Stovba L. F., Krotkov V. T., Melnikov S. A., Paveliev D. I., Chernikova N. K., Borisevich S. V.

https://doi.org/10.36233/0372-9311-102

Abstract

Epidemic vector-borne viral infections pose a serious threat to public health worldwide. There is currently no specific preventive treatment for most of them. One of the promising solutions for combating viral fevers is development of vector vaccines, including MVA-based vaccines, which have virtually no adverse side effects. The safety of the MVA strain and absent reactogenicity of recombinant MVA vaccines have been supported by many clinical trials.
The article focuses on test results for similar preventive products against viral fevers: Crimean-Congo hemorrhagic fever, Rift Valley fever, yellow fever, Chikungunya and Zika fevers.
Their immunogenicity was evaluated on immunocompetent and immunocompromised white mice; their protective efficacy was assessed on immunocompromised white mice deficient in IFN-α/β receptors, that are used for experimental modeling of the infection. Nearly all the new recombinant vaccines expressing immunodominant antigens demonstrated 100% protective efficacy. It has been found that although the vaccine expressing Zika virus structural proteins induced antibodies against specific viral glycoproteins, it can be associated with high risks when used for prevention of Zika fever in individuals who had dengue fever in the past, due to the phenomenon known as antibody-dependent enhancement of infection, which can occur in diseases caused by antigenically related flaviruses. For this reason, the vaccine expressing non-structural protein 1 (NS1) was developed for vaccination against Zika fever.
The yellow fever vaccine developed on the MVA platform had immunogenicity similar to that of the commercial 17D vaccine, outperforming the latter in safety.

References

1. Meseda C.A., Atukorale V., Kuhn J., Schmeisser F., Weir J.P. Percutaneous vaccination as an effective method of delivery of MVA and MVA-vectored vaccines. PLoS One. 2016; 11(2): e149364. https://doi.org/10/1371/journal.pone0149364

2. Volz A., Sutter G. Modified Vaccinia virus Ankara: History, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 2017; 97: 187-243. https://doi.org/10.1016/bs.aivir.2016.07.001

3. Melamed S., Israely T., Paran N. Challenges and achievements in prevention and treatment of smallpox. Vaccines (Basel). 2018; 6(1): 8. https://doi.org/10.3390/vaccines6010008

4. Frey S.E., Winokur P.L., Salata R.A., El-Kamary S.S., Turley C.B., Walter E.B., et al. Safety and immunogenicity of IMVAMUNE® smallpox vaccine using different strategies for post event scenario. Vaccine. 2013; 31(29): 3025-33. https://doi.org/10.1016/j.vaccine.2013.04.050

5. Mair A., Stickl H., Muller H.K., Danner K., Singer H. The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author’s transl). Zentralbl Bakteriol. B. 1978; 167(5-6): 375-90. (in German)

6. Von Krempelhuber B., Vollmar J., Pokorny R., Rapp P., Wullf N., Petzold B., et al. A randomized, double-blind, dose-finding phase II study to evaluate immunogenicity and safety of the third generation smallpox vaccine candidate IM-VAMUNE®. Vaccine. 2010; 28(5): 1209-16. https://doi.org/10.1016/j.vaccine.2009.11.030

7. Zitzman-Roth E-M., von Sonnenburg F., de la Motte S., Arndtz-Wiedemann N., von Krempelhuber A., Urbler N., et al. Cardiac safety of modified vaccinia Ankara for vaccination against smallpox in a young, healthy study population. PLoS One. 2015; 10(4): e0122653. https://doi.org/10.1371//journal.pone.0122653

8. Greenberg R.N., Hay C.M., Stapleton J.T., Marbury T.C., Wagner E., Kreitmeir E., et al. A randomized, double-blind, placebo-controlled phase II trial investigating the safety and immunogenicity of modified vaccinia Ankara smallpox vaccine (MVA-BN®) in 56-80-year-old subjects. PLoS One. 2016; 11(6): e0157335. https://doi.org/10/1371/journal.pone.0157335

9. Greenberg R.N., Hurley Y., Dinh V.V., Mraz S., Vera J.G., von Bredow D., et al. A multicenter, open-label, controlled phase II study to evaluate safety and immunogenicity of MVA smallpox vaccine (IMVAMUNE) in 18-40 year old subjects with diagnosed atopic dermatitis. PLoS One. 2015; 10(10): e0138348. https://doi.org/10/1371/journal.pone.0138348

10. Sander C.R., Pathan A.A., Beveridge N.E., Poulton I., Minassian A., Alder N., et al. Safety and immunogenicity of a new tuberculosis vaccine, MVA85, in Mycobacterium tuberculosis-infected individuals. Am. J. Respir. Crit. Care Med. 2009; 179(8): 724-33. https://doi.org/10.1164/rccm.200809-1486oc

11. Greenberg R.N., Overton E.T., Haas D.W., Frank I., Goldman M., von Krempelhuber A., et al. Safety, immunogenicity and surrogate markers of clinical efficacy for modified vaccinia Ankara as a smallpox vaccine in HIV-infected subjects. J. Infect. Dis. 2013; 207(5): 749-58. https://doi.org/10.1093/infdis/jis753

12. Chumakov M.P. A new disease — Crimean hemorrhagic fever. In: Sokoljv A.A., Chumakov M.P., Kolachev A.A., eds. Crimean Hemorrhagic Fever (Acute Infectious Capillary Toxicosis). Simferopol; 13-4.

13. Casals J. Antigenic similarity between the virus causing Crimean hemorrhagic fever and Congo virus. Proc. Soc. Exp. Biol. Med. 1969; 131(1): 233-6. https://doi.org/10.3181/00379727-131-33847

14. Buttigieg K.R., Dowall S.D., Findlay-Wilson S., Miloszewska A., Rayner E., Hewson R., et al. A novel vaccine against Crimean-Congo hemorrhagic fever protects 100% of animals against lethal challenge in a mouse model. PLoS One. 2014; 9(3): e91516. https://doi.org/10/1371/journal.pone.0091516

15. Papa A., Papadimitriou E., Christova I. The Bulgarian vaccine Crimean-Congo hemorrhagic fever virus strain. Scand. J. Infect. Dis. 2011; 43(3): 225-9. https://doi.org/10.3109/00365548.2010.540036

16. Spik K., Shurtleff A., Guttieri M.C., McElroy A.K., Hooper J.W., Schmaljohn C., et al. Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick borne encephalitis virus, Hantaan virus, and. Vaccine. 2006; 24(21): 4657-66. https://doi.org/10.1016/j.vaccine2005.08.34

17. Ghiasi S.M., Salmanian A.H., Chinicar S., Zakeri S. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus. Clin. Vaccine Immunol. 2011; 18(12): 2031-7. https://doi.org/10.1128CVI05352-11

18. Bente D.A., Alimonti J.B., Shich W.J., Camus G., Stroher U. Pathogenesis and immune response of Crimean-Congo hemorrhagic fever virusin a STAT-1 knockout mouse model. J. Virol. 2010; 84(21): 11089-100. https://doi.org/10.1128/jvi.01383-10

19. Dowall S.D., Graham V.A, Rayner E., Hunter L, Watson R, Taylor I., et al. Protective effects of modified vaccinia Ankara-based vaccine candidate against Crimean-Congo hemorrhagic require both cellular and humoral responses. PLoS One. 2016; 11(6): e0156637. https://doi.org/10/1371/journal.pone.0156637

20. Dowall S.D., Buttigieg K.R., Findlay-Wilson S.J.D., Rayner E., Miloszewska A., Graham V.A., et al. Crimean-Congo hemorrhagic fever (CCHV) viral vaccine expressing nucleoprotein is immunogenic but fails to confer protection against lethal disease. Hum. Vaccin. Immunother. 2016; 12(2): 2519-27. https://doi.org/10.1080/21645515.2015.1078045

21. Boshra H., Lorenzo G., Rodriguez F., Brun A.A. DNA vaccine encoding ubiquitinated Rift Valley fever virus nucleoprotein provides consistent immunity and protects IFNAR(-/-) mice upon lethal virus challenge. Vaccine. 2011; 29(27): p4469-75. https://doi.org/10.1016/j.vaccine2011.04.043

22. Dungu B., Louw I., Lubisi A., Hunter P., von Tcichman B.F., Bouloy M. Evaluation of the efficacy and safety of the Rift Valley fever clone 13 vaccine in sheep. Vaccine. 2010; 28(29): 4581-7. https://doi.org/10.1016/j.vaccine.2010.04.085

23. The Subcommittee on Arbovirus Laboratory Safety of the American Committee on Arthropod-Borne Viruses. Laboratory safety for arboviruses and certain other viruses of vertebrates. Am. J. Trop. Med. Hyg. 1980; 29(6) 1359-81. https://doi.org/10.4269/ajtmh.1980.29.1359

24. Lopez-Gil E., Lorenzo G., Hevia E., Borrego B., Eiden M., Groschup M., et al. A single immunization with MVA expressing immune-competent GnGc glycoproteins promotes epitope-specific CD8+-T cell activation and protects mice against a lethal RVFV infection. PLoS Negl. Trop. Dis. 2013; 7(7): e2309. https://doi.org/10/1371/journal.pntd.0002309

25. WHO. Yellow fever. Yellow fever. Fact sheet. No 100; 2009. Available at: https://who.int/mediacentre/factsheets/fs100/en/

26. Lindsey N.P, Schroeder B.A., Miller E.R., Braun M.M., Hinckley A.F., Marano N., et al. Adverse event reports following yellow fever vaccination. Vaccine. 2008; 26(48): 6077-82. https://doi.org/10.1016/j.vaccine.2008.09.009

27. Schafer B., Holzer G., Joachimsthler A., Coulibaly S., Schwendinger M., Crove B.A., et al. Pre-clinical efficacy and safety of experimental vaccines based on non-replication vaccinia vectors against Yellow fever. PLoS One. 2011; 6(9): e24505. https://doi.org/10/1371/journal.pone.0024505

28. Burt E.J., Rolph M.S., Rulli N.E., Mahalingam S., Heise M.T. Chikungunya re-emerging virus. Lancet. 2012; 379(9816): 662-71. https//doi.org/10/S0140-6736(11)6028-x

29. Weger-Lucarelli J., Chu H., Aliota M.T., Partidos C.D., Osorio J.E. A novel MVA vectored Chikungunya virus vaccine elicits protective immunity in mice. PLoS Negl. Trop. Dis. 2014; 8(7): e2970. https://doi.org/10.1371/journal.pntd.0002970

30. Garcia-Arriza J., Cepeda V., Hallengard D., Sorzano C., Kummerer B.M., Liljestom P., et al. A novel poxvirus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against Chikungunya infection. J. Virol. 2014; 88(6): 3527-47. https://doi.org/10.1128/jvi.03418-13

31. Van den Doel P., Volz A., Roose J.M., Sewbalaksing V.D., Pijlman G., van Middelkoop I., et al. Recombinant modified vaccinia virus Ankara expressing glycoprotein E2 of Chikungunya virus protects AG129 mice against lethal challenge. PLoS Negl. Trop. Dis. 2014; 8(9): 3101. https://doi.org/10/1371/journal.pntd.0003101

32. Weber C., Buchner S.M., Schnierle S. A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice. PLoS Negl. Trop. Dis. 2015; 9(4): e0003684. https://doi.org/10/1371/journal.pntd.0003684

33. Roques P., Ljungberg K., Kummerer B.M., Gosse L., Dereuddre-Bosquet N., Tchitchec N., et al. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus. JCI Insight. 2017; 2(6): e83527. https://doi.org/10.1172/jci.insight.83527

34. Brault A.C., Domi A., McDonald E.M., Talmi-Frank D., Mc-Curley N., Basun R., et al. A Zika vaccine targeting NS1 protein immunocompetent adult mice in a lethal model. Sci. Rep. 2017; 7(1): 14769. https://doi.org/10/1038/s41598-017-15039-8

35. Perez P., Marin M.Q., Lazaro-Frias A., de Oya N.J., Blazguez A.B., Escribano-Romero E., et al. A vaccine based on a modified vaccinia virus Ankara vector expressing Zika virus ructural proteins controls Zika virus replication in mice. Sci. Rep. 2018; 8(1): 17385. https://doi.org/10/1038/s41598-018-35724-6

36. Eudaileu J., Dennis M.L., Parker M.E., Phillips B.L., Huffman T.N., Bay C.P., et al. Maternal HIV-1 Env vaccination for systemic and breast milk immunity to prevent oral SHIV acquisition in infant macaques. mSphere. 2018; 3(1): e00505-17. https://doi.org/10.1128/msphere.00505-17

37. Beatty P.R., Puerta-Guardo H., Killingbeck S.S., Glasner D.R., Hopkins K., Harris E., et al. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci. Transl. Med. 2015; 7(304): 304ra141. https://doi.org/10.1126/scitranslmed.aaa3787

38. Wan S.W., Lu Y.T., Huang C.H., Lin C.F., Anderson R., Liu H.S., et al. Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PLoS One. 2014; 9(3): e92495. https://doi.org/10.1371/journal.pone.0092495

39. Kawiecki A.V., Christofferson R.C. Zika virus-induced antibody response enhances dengue virus serotype 2 replication in vitro. J. Infect. Dis. 2016; 214(6): 1357-60. https://doi.org/10.1093/infdis/jiw377