Журналов:     Статей:        

Журнал микробиологии, эпидемиологии и иммунобиологии. 2021; 98: 450-467

Клеточный и молекулярный уровень стратегии COVID-19 по индукции иммунодефицита. Возможные терапевтические решения

Бавыкин А. С.

https://doi.org/10.36233/0372-9311-119

Аннотация

В обзоре рассмотрен характер клинико-патологических нарушений, вызываемых высокопатогенными коронавирусами в организме человека, проведён анализ причин системного поражения различных органов и тканей, стратегии размножения вируса и связанного с этим синдрома цитокиновой реактивности с развитием специфического иммунодефицита на молекулярном уровне. Описаны наиболее сформировавшиеся на сегодняшний день подходы таргетной терапии синдрома цитокиновой реактивности и атипичной пневмонии с элементами тераностики — мониторинга молекулярных мишеней для направленной терапии. Приведён пример инновационной биоинженерной технологии, связанной с перепрограммированием клеток первичного «эшелона обороны» с возможностью наделения их высокоспецифическими навыками направленного уничтожения инфицированных вирусом клеток.

Список литературы

1. Karadag E. Increase in COVID-19 cases and case-fatality and case-recovery rates in Europe: A cross-temporal meta-analysis. J. Med. Virol. 2020, 92(9): 1511–7. https://doi.org/10.1002/jmv.26035

2. Zhao Y., Lu R., Shen J., Xie Z., Liu G., Tan W. Comparison of viral and epidemiological profiles of hospitalized children with severe acute respiratory infection in Beijing and Shanghai, China. BMC Infect. Dis. 2019, 19(1): 729. https://doi.org/10.1186/s12879-019-4385-5

3. Etemadi M.R., Jalilian F.A., Othman N., Lye M-S., Ansari S., Yubbu P., et al. Diversity of respiratory viruses detected among hospitalized children with acute lower respiratory tract infections at Hospital Serdang, Malaysia. J. Virol. Methods. 2019, 269: 1–6. https://doi.org/10.1016/j.jviromet.2019.03.013

4. Chan C.Y., Low J.G., Wyone W., Oon L.L.E., Tan B.H. Survey of respiratory virus in patients hospitalised for acute exacerbations of heart failure — a prospective observational. Ann. Acad. Med. Singap. 2018, 47(11): 445–50.

5. Лободанов С.А., Киселев И.С., Аммур Ю.И., Горбаленя А.Е., Зверев В.В., Файзулоев Е.Б. и др. Исследование видовой структуры риновирусов и коронавирусов, циркулировавших в Московском регионе в период с 2007 по 2012 г. Вопросы вирусологии. 2015, 60(3): 31–6.

6. Werner E. Smoke cloud pneumonia, a new atypical pneumonia in influenza diseases. Z. Gesamte Inn. Med. 1986, 41(7): 208–10.

7. Dawood F.S, Iuliano A.D., Reed C., Meltzer M.I., Shay D.K., Cheng P., et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect. Dis. 2012, 12(9): 687–95. https://doi.org/10.1016/s1473-3099(12)70121-4

8. Karponis D. Rheumatoid arthritis: the journey in pursuit of a cure. Rheumatol. Adv. Pract. 2017, 1(1): rkx008. https://doi.org/10.1093/rap/rkx008

9. Okamoto H., Kobayashi A., Yamanaka H. Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 2010: 268436. https://doi.org/10.1155/2010/268436

10. Biggioggero M., Crotti C., Becciolini A., Favalli E.G. Tocilizumab in the treatment of rheumatoid arthritis: an evidence-based review and patient selection. Drug Des. Devel. Ther. 2019, 13: 57–70. https://doi.org/10.2147/dddt.s150580

11. Cheung O.Y., Chan J.W.M., Ng C.K., Koo C.K. The spectrum of pathological changes in severe acute respiratory syndrome (SARS). Histopathology. 2004, 45(2): 119–24. https://doi.org/10.1111/j.1365-2559.2004.01926.x

12. Calabrese F., Pezzuto F., Fortarezza F., Hofman P., Kern I., Panizo A., et al. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European pulmonary pathologists. Virchows Arch. 2020, 477(3): 359–72. https://doi.org/10.1007/s00428-020-02886-6

13. Franks T.J., Chong P.Y., Chui P., Galvin J.R., Lourens R.M., Reid A.H., et al. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum. Pathol. 2003, 34(8): 743–8. https://doi.org/10.1016/s0046-8177(03)00367-8

14. Hsiao C.H., Wu M.Z., Chen C.L., Hsueh P.R., Hsieh S.W., Yang P.C., et al. Evolution of pulmonary pathology in severe acute respiratory syndrome. J. Formos. Med. Assoc. 2005, 104(2): 75–81.

15. Gu J., Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol. 2007, 170(4): 1136–47. https://doi.org/10.2353/ajpath.2007.061088

16. Vabret N., Britton G.J., Gruber C., Hegde S., Kim J., Kuksin M., et al. Immunology of COVID-19: current state of the science. Immunity. 2020, 52(6): 910–41. https://doi.org/10.1016/j.immuni.2020.05.002

17. Ding Y., Wang H., Shen H., Li Z., Geng J., Han H., et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J. Pathol. 2003, 200(3): 282–9. https://doi.org/10.1002/path.1440

18. Tse G.M.K., To K.F., Chan P.K.S., Lo A.W.I., Ng K.C., Wu A., et al. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J. Clin. Pathol. 2004, 57(3): 260–5. https://doi.org/10.1136/jcp.2003.013276

19. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005, 202(3): 415–24. https://doi.org/10.1084/jem.20050828

20. Hwang D.M., Chamberlain D.W., Poutanen S.M., Low D.E., Asa S.L., Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod. Pathol. 2005, 18(1): 1–10. https://doi.org/10.1038/modpathol.3800247

21. Nicholls J.M., Poon L.L.M., Lee K.C., Ng W.F., Lai S.T., Leung C.Y., et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003, 24, 361(9371): 1773–8. https://doi.org/10.1016/s0140-6736(03)13413-7

22. Leung W.K., To K.F., Chan P.K.S., Chan H.L.Y., Wu A.K.L., Lee N., et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. 2003, 125(4): 1011–7. https://doi.org/10.1016/s0016-5085(03)01215-0

23. Chu K.H., Tsang W.K., Tang C.S., Lam M.F., Lai F.M., To K.F., et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005, 67(2): 698–705. https://doi.org/10.1111/j.1523-1755.2005.67130.x

24. Wu V.C., Hsueh P.R., Lin W.C., Huang J.W., Tsai H.B., Chen Y.M., et al. Acute renal failure in SARS patients: more than rhabdomyolysis. Nephrol. Dial. Transplant. 2004, 19(12): 3180–2. https://doi.org/10.1093/ndt/gfh436

25. Wei L., Sun S., Xu C.H., Zhang J., Xu Y., Zhu H., et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum. Pathol. 2007, 38(1): 95–102. https://doi.org/10.1016/j.humpath.2006.06.011

26. Nakajima N., Asahi-Ozaki Y., Nagata N., Sato Y., Dizon F., Paladin F.J., et al. SARS coronavirus-infected cells in lung detected by new in situ hybridization technique Jpn J. Infect. Dis. 2003, 56(3): 139–41.

27. Farcas G.A., Poutanen S.M., Mazzulli T., Willey B.M., Butany J., Asa S.L., et al. Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus. J. Infect. Dis. 2005, 191(2): 193–7. https://doi.org/10.1086/426870

28. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39(5): 529–39. https://doi.org/10.1007/s00281-017-0629-x

29. Sallusto F., Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. Arthritis Res. 2002, 4(Suppl. 3): S127–32. https://doi.org/10.1186/ar567

30. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020, 181(5): 1016–1035.e19. https://doi.org/10.1016/j.cell.2020.04.035

31. Hayden M.S., Ghosh S. NF-κB in immunobiology. Cell Res. 2011, 21(2): 223–44. https://doi.org/10.1038/cr.2011.13

32. Cameron M.J., Kelvin A.A., Leon A.J., Cameron C.M., Ran L., Xu L., et al. Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model. PLoS One. 2012, 7(9): e45842. https://doi.org/10.1371/journal.pone.0045842

33. Minakshi R., Padhan K., Rani M., Khan N., Ahmad F., Jameel S. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS ONE. 2009, 4(12): e8342. https://doi.org/10.1371/journal.pone.0008342

34. Zhang Y.Y., Li B.R., Ning B.T. The comparative immunological characteristics of SARS-CoV, MERS-CoV, and SARS-CoV-2 сoronavirus infections. Front. Immunol. 2020, 11: 2033. https://doi.org/10.3389/fimmu.2020.02033

35. Wathelet M.G., Orr M., Frieman M.B., Baric R.S. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J. Virol. 2007, 81(21): 11620–33. https://doi.org/10.1128/jvi.00702-07

36. Lebeau G., Vagner D., Frumence E., Ah-Pine F., Guillot X., Nobecourt E., et al. Deciphering SARS-CoV-2 Virologic and Immunologic Features. Int. J. Mol. Sci. 2020, 21(16): 5932. https://doi.org/10.3390/ijms21165932

37. Clay C., Donart N., Fomukong N., Knight J.B., Lei W., Price L., et al. Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge. J. Virol. 2012, 86(8): 4234–44. https://doi.org/10.1128/jvi.06791-11

38. Liu L., Wei Q., Lin Q., Fang J., Wang H., Kwok H., et al. Anti– spike IgG causes severe acute lung injury by skewing phage responses during acute SARS-CoV infection. JCI Insight. 2019, 4(4): e123158. https://doi.org/10.1172/jci.insight.123158

39. Portt L., Norman G., Clapp C., Greenwood M., Greenwood M.T. Anti-apoptosis and cell survival: a review. Biochim. Biophys. Acta. 2011, 1813(1): 238–259. https://doi.org/10.1016/j.bbamcr.2010.10.010

40. Marfe G., Tafani M., Fiorito F., Pagnini U., Iovane G., De Martino L. Involvement of FOXO transcription factors, TRAILFasL/Fas, and sirtuin proteins family in canine coronavirus type II-induced apoptosis. PLoS One. 2011, 6(11): e27313. https://doi.org/10.1371/journal.pone.0027313

41. Fulda S. Targeting c-FLICE-like inhibitory protein (CFLAR) in cancer. Expert. Opin. Ther. Targets. 2013, 17(2): 195–201. https://doi.org/10.1517/14728222.2013.736499

42. Ivanisenko N.V., Seyrek K., Kolchanov N.A., Ivanisenko V.A., Lavrik I.N. The role of death domain proteins in host response upon SARS-CoV-2 infection: modulation of programmed cell death and translational applications. Cell Death Discov. 2020, 6: 101. https://doi.org/10.1038/s41420-020-00331-w

43. Chen Z., Wherry J.E. T cell responses in patients with COVID-19. Nat. Rev. Immunol. 2020, 20(9): 529–36. https://doi.org/10.1038/s41577-020-0402-6

44. Lian L., Ling X., Chen L. T cell response in patients with COVID-19. Blood Science. 2020, 2(3): 76–8. https://doi.org/10.1097/BS9.0000000000000050

45. Nikirenkov Y. Efficiency of tocilizumab therapy for an exacerbation of systemic lupus erythematosus: a review of literature. Acute Chronic. Dis. 2018, 2(1): 1000103. https://doi.org/10.14412/1996-7012-2017-3-85-90

46. Hashizume M. Outlook of IL-6 signaling blockade for COVID-19 pneumonia. Inflamm. Regen. 2020, 40: 24. https://doi.org/10.1186/s41232-020-00134-7

47. Steenholdt C. Personalized therapy with TNF-inhibitors in Crohn's disease: optimizing treatment outcomes by monitoring drug levels and anti-drug antibodies. Dan. Med. J. 2016, 63(8): B5270.

48. Gianfrancesco M., Hyrich K.L. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2020, 79: 859–66. https://doi.org/10.1136/annrheumdis-2020-218713

49. Mahase E. Covid-19: Anti-TNF drug adalimumab to be trialled for patients in the community. BMJ. 2020, 371: m3847. https://doi.org/10.1136/bmj.m3847

50. Fielding C.A., McLoughlin R.M., McLeod L., Colmont C.S., Najdovska M., Grail D., et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J. Immunol. 2008, 181(3): 2189–95. https://doi.org/10.4049/jimmunol.181.3.2189

51. Velazquez-Salinas L., Verdugo-Rodriguez A., Rodriguez L.L., Borca M.V. The role of interleukin 6 during viral infections. Front Microbiol. 2019, 10: 1057. https://doi.org/10.1016/j.autrev.2020.102537

52. Fragoulis G.E., McInnes I.B., Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford). 2019, 58(Suppl. 1): i43–i54. https://doi.org/10.1093/rheumatology/key276

53. Kotyla P.J., Islam M.A., Engelmann M. Clinical Aspects of Janus Kinase (JAK) inhibitors in the cardiovascular system in patients with rheumatoid arthritis. Int. J. Mol. Sci. 2020, 21(19): 7390. https://doi.org/10.3390/ijms21197390

54. Isomaki P., Junttila I., Vidqvist K.L., Korpela M., SilvennoinenO. The activity of JAK-STAT pathways in rheumatoid arthritis: constitutive activation of STAT3 correlates with interleukin 6 levels. Rheumatology (Oxford). 2015, 54(6): 1103–13. https://doi.org/10.1093/rheumatology/keu430

55. Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Sig. Transduct. Target. Ther. 2017, 2: 17023. https://doi.org/10.1038/sigtrans.2017.23

56. Zahid A., Li B., Kombe A.J.K., Jin T., Tao J. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front. Immunol. 2019, 10: 2538. https://doi.org/10.3389/fimmu.2019.02538

57. Freeman T.L., Swartz T.H. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front. Immunol. 2020, 11: 1518. https://doi.org/10.3389/fimmu.2020.01518

58. Kircheis R., Haasbach E., Lueftenegger D., Heyken W.T., Ocker M., Planz O. NF-κB pathway as a potential target for treatment of critical stage COVID-19 patients. Front. Immunol. 2020, 11: 598444. https://doi.org/10.3389/fimmu.2020.598444

59. Werner S., Grose R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003, 83(3): 835–70. https://doi.org/10.1152/physrev.2003.83.3.835

60. Venkataraman T., Frieman M.B. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral. Res. 2017, 143: 142–50. https://doi.org/10.1016/j.antiviral.2017.03.022

61. Weisberg E., Parent A., Yang P.L., Sattler M., Liu Q., Liu Q., et al. Repurposing of kinase inhibitors for treatment of COVID-19. Pharm. Res. 2020, 37(9): 167. https://doi.org/10.1007/s11095-020-02851-7

62. Pehlivan K.C., Duncan B.B., Lee D.W. CAR-T cell therapy for acute lymphoblastic leukemia: transforming the treatment of relapsed and refractory. Disease. Curr. Hematol. Malig. Rep. 2018, 13(5): 396–406. https://doi.org/10.1007/s11899-018-0470-x

63. Собко Е.А., Соловьева И.А., Демко И.В., Крапошина А.Ю., Гордеева Н.В., Чубарова С.В. и др. Интерлейкин 15 и его роль в иммунном воспалении. Бюллетень физиологии и патологии дыхания. 2015, (57): 113–9.

Journal of microbiology, epidemiology and immunobiology. 2021; 98: 450-467

Cell and molecular level of strategy of COVID-19 to induce immunodeficiency. Possible therapeutic solutions

Bavykin A. S.

https://doi.org/10.36233/0372-9311-119

Abstract

The review considers the nature of clinical and pathological disorders caused by highly pathogenic coronaviruses in the human body, analyzes the causes of systemic damage to various organs and tissues, the strategy of virus reproduction and the associated syndrome of cytokine reactivity with the development of specific immunodeficiency at the molecular level. The most developed approaches to the targeted therapy of cytokine reactivity syndrome and SARS including elements of theranostics — monitoring of molecular targets for targeted therapy — are described. An example of an innovative bioengineering technology associated with the reprogramming of cells of the primary "echelon of defense" with the ability to endow them with highly specific skills of directed destruction of cells infected with a virus is given.

References

1. Karadag E. Increase in COVID-19 cases and case-fatality and case-recovery rates in Europe: A cross-temporal meta-analysis. J. Med. Virol. 2020, 92(9): 1511–7. https://doi.org/10.1002/jmv.26035

2. Zhao Y., Lu R., Shen J., Xie Z., Liu G., Tan W. Comparison of viral and epidemiological profiles of hospitalized children with severe acute respiratory infection in Beijing and Shanghai, China. BMC Infect. Dis. 2019, 19(1): 729. https://doi.org/10.1186/s12879-019-4385-5

3. Etemadi M.R., Jalilian F.A., Othman N., Lye M-S., Ansari S., Yubbu P., et al. Diversity of respiratory viruses detected among hospitalized children with acute lower respiratory tract infections at Hospital Serdang, Malaysia. J. Virol. Methods. 2019, 269: 1–6. https://doi.org/10.1016/j.jviromet.2019.03.013

4. Chan C.Y., Low J.G., Wyone W., Oon L.L.E., Tan B.H. Survey of respiratory virus in patients hospitalised for acute exacerbations of heart failure — a prospective observational. Ann. Acad. Med. Singap. 2018, 47(11): 445–50.

5. Lobodanov S.A., Kiselev I.S., Ammur Yu.I., Gorbalenya A.E., Zverev V.V., Faizuloev E.B. i dr. Issledovanie vidovoi struktury rinovirusov i koronavirusov, tsirkulirovavshikh v Moskovskom regione v period s 2007 po 2012 g. Voprosy virusologii. 2015, 60(3): 31–6.

6. Werner E. Smoke cloud pneumonia, a new atypical pneumonia in influenza diseases. Z. Gesamte Inn. Med. 1986, 41(7): 208–10.

7. Dawood F.S, Iuliano A.D., Reed C., Meltzer M.I., Shay D.K., Cheng P., et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect. Dis. 2012, 12(9): 687–95. https://doi.org/10.1016/s1473-3099(12)70121-4

8. Karponis D. Rheumatoid arthritis: the journey in pursuit of a cure. Rheumatol. Adv. Pract. 2017, 1(1): rkx008. https://doi.org/10.1093/rap/rkx008

9. Okamoto H., Kobayashi A., Yamanaka H. Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 2010: 268436. https://doi.org/10.1155/2010/268436

10. Biggioggero M., Crotti C., Becciolini A., Favalli E.G. Tocilizumab in the treatment of rheumatoid arthritis: an evidence-based review and patient selection. Drug Des. Devel. Ther. 2019, 13: 57–70. https://doi.org/10.2147/dddt.s150580

11. Cheung O.Y., Chan J.W.M., Ng C.K., Koo C.K. The spectrum of pathological changes in severe acute respiratory syndrome (SARS). Histopathology. 2004, 45(2): 119–24. https://doi.org/10.1111/j.1365-2559.2004.01926.x

12. Calabrese F., Pezzuto F., Fortarezza F., Hofman P., Kern I., Panizo A., et al. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European pulmonary pathologists. Virchows Arch. 2020, 477(3): 359–72. https://doi.org/10.1007/s00428-020-02886-6

13. Franks T.J., Chong P.Y., Chui P., Galvin J.R., Lourens R.M., Reid A.H., et al. Lung pathology of severe acute respiratory syndrome (SARS): a study of 8 autopsy cases from Singapore. Hum. Pathol. 2003, 34(8): 743–8. https://doi.org/10.1016/s0046-8177(03)00367-8

14. Hsiao C.H., Wu M.Z., Chen C.L., Hsueh P.R., Hsieh S.W., Yang P.C., et al. Evolution of pulmonary pathology in severe acute respiratory syndrome. J. Formos. Med. Assoc. 2005, 104(2): 75–81.

15. Gu J., Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol. 2007, 170(4): 1136–47. https://doi.org/10.2353/ajpath.2007.061088

16. Vabret N., Britton G.J., Gruber C., Hegde S., Kim J., Kuksin M., et al. Immunology of COVID-19: current state of the science. Immunity. 2020, 52(6): 910–41. https://doi.org/10.1016/j.immuni.2020.05.002

17. Ding Y., Wang H., Shen H., Li Z., Geng J., Han H., et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J. Pathol. 2003, 200(3): 282–9. https://doi.org/10.1002/path.1440

18. Tse G.M.K., To K.F., Chan P.K.S., Lo A.W.I., Ng K.C., Wu A., et al. Pulmonary pathological features in coronavirus associated severe acute respiratory syndrome (SARS). J. Clin. Pathol. 2004, 57(3): 260–5. https://doi.org/10.1136/jcp.2003.013276

19. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005, 202(3): 415–24. https://doi.org/10.1084/jem.20050828

20. Hwang D.M., Chamberlain D.W., Poutanen S.M., Low D.E., Asa S.L., Butany J. Pulmonary pathology of severe acute respiratory syndrome in Toronto. Mod. Pathol. 2005, 18(1): 1–10. https://doi.org/10.1038/modpathol.3800247

21. Nicholls J.M., Poon L.L.M., Lee K.C., Ng W.F., Lai S.T., Leung C.Y., et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003, 24, 361(9371): 1773–8. https://doi.org/10.1016/s0140-6736(03)13413-7

22. Leung W.K., To K.F., Chan P.K.S., Chan H.L.Y., Wu A.K.L., Lee N., et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. 2003, 125(4): 1011–7. https://doi.org/10.1016/s0016-5085(03)01215-0

23. Chu K.H., Tsang W.K., Tang C.S., Lam M.F., Lai F.M., To K.F., et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005, 67(2): 698–705. https://doi.org/10.1111/j.1523-1755.2005.67130.x

24. Wu V.C., Hsueh P.R., Lin W.C., Huang J.W., Tsai H.B., Chen Y.M., et al. Acute renal failure in SARS patients: more than rhabdomyolysis. Nephrol. Dial. Transplant. 2004, 19(12): 3180–2. https://doi.org/10.1093/ndt/gfh436

25. Wei L., Sun S., Xu C.H., Zhang J., Xu Y., Zhu H., et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum. Pathol. 2007, 38(1): 95–102. https://doi.org/10.1016/j.humpath.2006.06.011

26. Nakajima N., Asahi-Ozaki Y., Nagata N., Sato Y., Dizon F., Paladin F.J., et al. SARS coronavirus-infected cells in lung detected by new in situ hybridization technique Jpn J. Infect. Dis. 2003, 56(3): 139–41.

27. Farcas G.A., Poutanen S.M., Mazzulli T., Willey B.M., Butany J., Asa S.L., et al. Fatal severe acute respiratory syndrome is associated with multiorgan involvement by coronavirus. J. Infect. Dis. 2005, 191(2): 193–7. https://doi.org/10.1086/426870

28. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39(5): 529–39. https://doi.org/10.1007/s00281-017-0629-x

29. Sallusto F., Lanzavecchia A. The instructive role of dendritic cells on T-cell responses. Arthritis Res. 2002, 4(Suppl. 3): S127–32. https://doi.org/10.1186/ar567

30. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N., et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020, 181(5): 1016–1035.e19. https://doi.org/10.1016/j.cell.2020.04.035

31. Hayden M.S., Ghosh S. NF-κB in immunobiology. Cell Res. 2011, 21(2): 223–44. https://doi.org/10.1038/cr.2011.13

32. Cameron M.J., Kelvin A.A., Leon A.J., Cameron C.M., Ran L., Xu L., et al. Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model. PLoS One. 2012, 7(9): e45842. https://doi.org/10.1371/journal.pone.0045842

33. Minakshi R., Padhan K., Rani M., Khan N., Ahmad F., Jameel S. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS ONE. 2009, 4(12): e8342. https://doi.org/10.1371/journal.pone.0008342

34. Zhang Y.Y., Li B.R., Ning B.T. The comparative immunological characteristics of SARS-CoV, MERS-CoV, and SARS-CoV-2 soronavirus infections. Front. Immunol. 2020, 11: 2033. https://doi.org/10.3389/fimmu.2020.02033

35. Wathelet M.G., Orr M., Frieman M.B., Baric R.S. Severe acute respiratory syndrome coronavirus evades antiviral signaling: role of nsp1 and rational design of an attenuated strain. J. Virol. 2007, 81(21): 11620–33. https://doi.org/10.1128/jvi.00702-07

36. Lebeau G., Vagner D., Frumence E., Ah-Pine F., Guillot X., Nobecourt E., et al. Deciphering SARS-CoV-2 Virologic and Immunologic Features. Int. J. Mol. Sci. 2020, 21(16): 5932. https://doi.org/10.3390/ijms21165932

37. Clay C., Donart N., Fomukong N., Knight J.B., Lei W., Price L., et al. Primary severe acute respiratory syndrome coronavirus infection limits replication but not lung inflammation upon homologous rechallenge. J. Virol. 2012, 86(8): 4234–44. https://doi.org/10.1128/jvi.06791-11

38. Liu L., Wei Q., Lin Q., Fang J., Wang H., Kwok H., et al. Anti– spike IgG causes severe acute lung injury by skewing phage responses during acute SARS-CoV infection. JCI Insight. 2019, 4(4): e123158. https://doi.org/10.1172/jci.insight.123158

39. Portt L., Norman G., Clapp C., Greenwood M., Greenwood M.T. Anti-apoptosis and cell survival: a review. Biochim. Biophys. Acta. 2011, 1813(1): 238–259. https://doi.org/10.1016/j.bbamcr.2010.10.010

40. Marfe G., Tafani M., Fiorito F., Pagnini U., Iovane G., De Martino L. Involvement of FOXO transcription factors, TRAILFasL/Fas, and sirtuin proteins family in canine coronavirus type II-induced apoptosis. PLoS One. 2011, 6(11): e27313. https://doi.org/10.1371/journal.pone.0027313

41. Fulda S. Targeting c-FLICE-like inhibitory protein (CFLAR) in cancer. Expert. Opin. Ther. Targets. 2013, 17(2): 195–201. https://doi.org/10.1517/14728222.2013.736499

42. Ivanisenko N.V., Seyrek K., Kolchanov N.A., Ivanisenko V.A., Lavrik I.N. The role of death domain proteins in host response upon SARS-CoV-2 infection: modulation of programmed cell death and translational applications. Cell Death Discov. 2020, 6: 101. https://doi.org/10.1038/s41420-020-00331-w

43. Chen Z., Wherry J.E. T cell responses in patients with COVID-19. Nat. Rev. Immunol. 2020, 20(9): 529–36. https://doi.org/10.1038/s41577-020-0402-6

44. Lian L., Ling X., Chen L. T cell response in patients with COVID-19. Blood Science. 2020, 2(3): 76–8. https://doi.org/10.1097/BS9.0000000000000050

45. Nikirenkov Y. Efficiency of tocilizumab therapy for an exacerbation of systemic lupus erythematosus: a review of literature. Acute Chronic. Dis. 2018, 2(1): 1000103. https://doi.org/10.14412/1996-7012-2017-3-85-90

46. Hashizume M. Outlook of IL-6 signaling blockade for COVID-19 pneumonia. Inflamm. Regen. 2020, 40: 24. https://doi.org/10.1186/s41232-020-00134-7

47. Steenholdt C. Personalized therapy with TNF-inhibitors in Crohn's disease: optimizing treatment outcomes by monitoring drug levels and anti-drug antibodies. Dan. Med. J. 2016, 63(8): B5270.

48. Gianfrancesco M., Hyrich K.L. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 2020, 79: 859–66. https://doi.org/10.1136/annrheumdis-2020-218713

49. Mahase E. Covid-19: Anti-TNF drug adalimumab to be trialled for patients in the community. BMJ. 2020, 371: m3847. https://doi.org/10.1136/bmj.m3847

50. Fielding C.A., McLoughlin R.M., McLeod L., Colmont C.S., Najdovska M., Grail D., et al. IL-6 regulates neutrophil trafficking during acute inflammation via STAT3. J. Immunol. 2008, 181(3): 2189–95. https://doi.org/10.4049/jimmunol.181.3.2189

51. Velazquez-Salinas L., Verdugo-Rodriguez A., Rodriguez L.L., Borca M.V. The role of interleukin 6 during viral infections. Front Microbiol. 2019, 10: 1057. https://doi.org/10.1016/j.autrev.2020.102537

52. Fragoulis G.E., McInnes I.B., Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford). 2019, 58(Suppl. 1): i43–i54. https://doi.org/10.1093/rheumatology/key276

53. Kotyla P.J., Islam M.A., Engelmann M. Clinical Aspects of Janus Kinase (JAK) inhibitors in the cardiovascular system in patients with rheumatoid arthritis. Int. J. Mol. Sci. 2020, 21(19): 7390. https://doi.org/10.3390/ijms21197390

54. Isomaki P., Junttila I., Vidqvist K.L., Korpela M., SilvennoinenO. The activity of JAK-STAT pathways in rheumatoid arthritis: constitutive activation of STAT3 correlates with interleukin 6 levels. Rheumatology (Oxford). 2015, 54(6): 1103–13. https://doi.org/10.1093/rheumatology/keu430

55. Liu T., Zhang L., Joo D., Sun S.C. NF-κB signaling in inflammation. Sig. Transduct. Target. Ther. 2017, 2: 17023. https://doi.org/10.1038/sigtrans.2017.23

56. Zahid A., Li B., Kombe A.J.K., Jin T., Tao J. Pharmacological Inhibitors of the NLRP3 Inflammasome. Front. Immunol. 2019, 10: 2538. https://doi.org/10.3389/fimmu.2019.02538

57. Freeman T.L., Swartz T.H. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front. Immunol. 2020, 11: 1518. https://doi.org/10.3389/fimmu.2020.01518

58. Kircheis R., Haasbach E., Lueftenegger D., Heyken W.T., Ocker M., Planz O. NF-κB pathway as a potential target for treatment of critical stage COVID-19 patients. Front. Immunol. 2020, 11: 598444. https://doi.org/10.3389/fimmu.2020.598444

59. Werner S., Grose R. Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 2003, 83(3): 835–70. https://doi.org/10.1152/physrev.2003.83.3.835

60. Venkataraman T., Frieman M.B. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral. Res. 2017, 143: 142–50. https://doi.org/10.1016/j.antiviral.2017.03.022

61. Weisberg E., Parent A., Yang P.L., Sattler M., Liu Q., Liu Q., et al. Repurposing of kinase inhibitors for treatment of COVID-19. Pharm. Res. 2020, 37(9): 167. https://doi.org/10.1007/s11095-020-02851-7

62. Pehlivan K.C., Duncan B.B., Lee D.W. CAR-T cell therapy for acute lymphoblastic leukemia: transforming the treatment of relapsed and refractory. Disease. Curr. Hematol. Malig. Rep. 2018, 13(5): 396–406. https://doi.org/10.1007/s11899-018-0470-x

63. Sobko E.A., Solov'eva I.A., Demko I.V., Kraposhina A.Yu., Gordeeva N.V., Chubarova S.V. i dr. Interleikin 15 i ego rol' v immunnom vospalenii. Byulleten' fiziologii i patologii dykhaniya. 2015, (57): 113–9.