Preview

Журнал микробиологии, эпидемиологии и иммунобиологии

Расширенный поиск

Метаболомное и экспосомное профилирование клинических образцов от пациентов с COVID-19 в Индии

https://doi.org/10.36233/0372-9311-161

Полный текст:

Аннотация

Введение. COVID-19 стал глобальной проблемой начиная с января 2020 г. В Индии локдаун был введен 22 марта 2020 г. вследствие резкого роста числа пациентов с COVID-19 в крупных городах и штатах страны. Данное исследование посвящено изучению роли метаболитов в прогнозе исхода инфекции, вызываемой SARS-CoV-2.

Материалы и методы. Выполнено метаболомное профилирование 106 образцов плазмы и 24 образцов мазков от индийских пациентов с клиническими проявлениями инфекции, проживавших в регионе Мумбаи. Образцы плазмы и мазков пациентов с положительным результатом на COVID-19 были дополнительно разделены на две группы в соответствии с нетяжёлым и тяжёлым течением COVID-19.

Результаты. В результате анализа первичных данных были обнаружены 7949 и 12 871 метаболитов в образцах плазмы и мазков соответственно. По сравнению с COVID-19-отрицательными образцами в образцах плазмы и мазков от пациентов с COVID-19 были обнаружены 11 и 35 значительно изменённых метаболитов соответственно. Кроме того, в образцах плазмы и мазков от пациентов с тяжёлым COVID-19 выявлены 9 и 23 метаболита соответственно, значительно изменённые по сравнению с образцами от пациентов с нетяжёлым течением COVID-19. Обнаружено, что COVID-19 оказывает наибольшее влияние на метаболические пути, связанные с метаболизмом аминокислот, сфингозина и солей желчных кислот.

Заключение. Результаты данного исследования способствуют идентификации потенциальных кандидатов в биомаркёры на основе метаболитов для быстрой диагностики и прогноза в клинической практике.

Об авторах

Sh. Aggarwal
Indian Institute of Technology Bombay Renuka Bankar
Индия


Sh. Parihari
Indian Institute of Technology Bombay
Индия


А. Banerjee
Indian Institute of Technology Bombay
Индия


J. Roy
Indian Institute of Technology Bombay
Индия


N. Banerjee
Indian Institute of Technology Bombay Renuka Bankar
Индия


R. Bankar
Indian Institute of Technology Bombay
Индия


S. Kumar
Thermo Fisher Scientific India | First Technology Place
Индия


M. Choudhury
Indian Institute of Technology Bombay
Индия


R. Shah
Indian Institute of Technology Bombay
Индия


Kh. Bhojak
Indian Institute of Technology Bombay
Индия


V. Palanivel
Indian Institute of Technology Bombay
Индия


А. Salkar
Indian Institute of Technology Bombay
Индия


S. Agrawal
Kasturba Hospital for Infectious Diseases
Индия


O. Shrivastav
Kasturba Hospital for Infectious Diseases
Индия


J. Shastri
Kasturba Hospital for Infectious Diseases
Индия


S. Srivastava
Indian Institute of Technology Bombay
Индия


Список литературы

1. Elsevier. Novel Coronavirus Information Center. Available at: https://www.elsevier.com/connect/coronavirus-information-center

2. Clark N.M., Lynch J.P. Influenza: epidemiology, clinical features, therapy, and prevention. Semin. Respir. Crit. Care Med. 2011; 32(4): 373–92. https://doi.org/10.1055/s-0031-1283278

3. Wan S., Xiang Y., Fang W., Zheng Y., Li B., Hu Y., et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J. Med. Virol. 2020; 92(7): 797–806. https://doi.org/10.1002/jmv.25783

4. Iacobucci G. Long Covid: Damage to multiple organs presents in young, low risk patients. BMJ. 2020; 371. https://doi.org/10.1136/bmj.m4470

5. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11): 1061–9. https://doi.org/10.1001/jama.2020.1585

6. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020; 395(10229): 1054–62. https://doi.org/10.1016/s0140-6736(20)30566-3

7. Merckx J., Wali R., Schiller I., Caya C., Gore G.C., Chartrand C., et al. Diagnostic accuracy of novel and traditional rapid tests for influenza infection compared with reverse transcriptase polymerase chain reaction. Ann. Intern. Med. 2017; 167(6): 394–409. https://doi.org/10.7326/M17-0848

8. Wu L., Qu X. Cancer biomarker detection: recent achievements and challenges. Chem. Soc. Rev. 2015; 44(10): 2963–97. https://doi.org/10.1039/C4CS00370E

9. Pegalajar-Jurado A., Fitzgerald B.L., Islam M.N., Belisle J.T., Wormser G.P., Waller K.S., et al. Identification of urine metabolites as biomarkers of early Lyme disease. Sci. Rep. 2018; 8(1): 12204. https://doi.org/10.1038/s41598-018-29713-y

10. Weiner J., Maertzdorf J., Sutherland J.S., Duffy F.J., Thompson E., Suliman S., et al. Metabolite changes in blood predict the onset of tuberculosis. Nat. Commun. 2018; 9(1): 5208. https://doi.org/10.1038/s41467-018-07635-7

11. Kang D.W., Ilhan Z.E., Isern N.G., Hoyt D.W., Howsmon D.P., Shaffer M., et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe. 2018; 49: 121–31. https://doi.org/10.1016/j.anaerobe.2017.12.007

12. Nalbantoglu S. Metabolomics: basic principles and strategies. Mol. Med. 2019. https://doi.org/10.5772/intechopen.88563

13. Franklin, S., Vondriska T.M. Genomes, proteomes, and the central dogma. Circ. Cardiovasc. Genet. 2011; 4(5): 576. https://doi.org/10.1161/CIRCGENETICS.110.957795

14. Nägele T. Linking metabolomics data to underlying metabolic regulation. Front. Mol. Biosci. 2014; 1: 22. https://doi.org/10.3389/fmolb.2014.00022

15. Allen U.D., Aoki F.Y., Stiver H.G. The use of antiviral drugs for influenza: recommended guidelines for practitioners. Can. J. Infect. Dis. Med. Microbiol. 2006; 17(5): 273–84. https://doi.org/10.1155/2006/165940

16. Colson P., Rolain J.M., Lagier J.C., Brouqui P., Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int. J. Antimicrob. Agents. 2020; 55(4): 105932. https://doi.org/10.1016/j.ijantimicag.2020.105932

17. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M., et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. 2020; 56(1): 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949

18. Grein J., Ohmagari N., Shin D., Diaz G., Asperges E., Castagna A., et al. Compassionate use of remdesivir for patients with severe Covid-19. N. Engl. J. Med. 2020; 382(24): 2327–36. https://doi.org/10.1056/nejmoa2007016

19. Savarino A., Di Trani L., Donatelli I., Cauda R., Cassone A. New Insights into the antiviral effects of chloroquine. Lancet Infect. Dis. 2006; 6(2): 67–9. https://doi.org/10.1016/S1473-3099(06)70361-9

20. Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek T.G., et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2005; 2: 69. https://doi.org/10.1186/1743-422X-2-69

21. Touret F., de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res. 2020; 177: 104762. https://doi.org/10.1016/j.antiviral.2020.104762

22. Yan Y., Zou Z., Sun Y., Li X., Xu K. F., Wei Y., et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza a H5N1 virus infection in an animal model. Cell Res. 2013; 23(2): 300–2. https://doi.org/10.1038/cr.2012.165

23. Gautret P., Lagier J.C., Parola P., Hoang V.T., Meddeb L., Mailhe M., et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents. 2020; 56(1): 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949

24. Jiang C., Wang X., Li X., Inlora J., Wang T., Liu Q., et al. Dynamic human environmental exposome revealed by longitudinal personal monitoring. Cell. 2018; 175(1): 277–91.e31. https://doi.org/10.1016/j.cell.2018.08.060

25. Nicholson J.K., Wilson I.D. Understanding “global” systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2003; 2(8): 668–76. https://doi.org/10.1038/nrd1157

26. Rappaport S.M., Barupal D.K., Wishart D., Vineis P., Scalbert A. The blood exposome and its role in discovering causes of disease. Environ. Health. Perspect. 2014; 122(8): 769–74. https://doi.org/10.1289/ehp.1308015

27. Nicholson J.K., Holmes E., Kinross J.M., Darzi A.W., Takats Z., Lindon J.C. Metabolic phenotyping in clinical and surgical environments. Nature. 2012; 491(7424): 384–92. https://doi.org/10.1038/nature11708

28. Bray G.A., Redman L.M., de Jonge L., Rood J., Sutton E.F., Smith S.R. Plasma amino acids during 8 weeks of overfeeding: relation to diet body composition and fat cell size in the PROOF study. Obesity (Silver Spring). 2018; 26(2): 324–31. https://doi.org/10.1002/oby.22087

29. Wild C.P. The exposome: from concept to utility. Int. J. Epidemiol. 2012; 41(1): 24–32. https://doi.org/10.1093/ije/dyr236

30. Richardson S., Hirsch J.S., Narasimhan M., Crawford J.M., McGinn T., Davidson K.W., et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA. 2020; 323(20): 2052. https://doi.org/10.1001/jama.2020.6775

31. Su Y., Chen D., Yuan D., Lausted C., Choi J., Dai C.L., et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell. 2020; 183(6): 1479–95.e20. https://doi.org/10.1016/j.cell.2020.10.037

32. Chen Y.M., Zheng Y., Yu Y., Wang Y., Huang Q., Qian F., et al. Blood molecular markers associated with COVID-19 immunopathology and multi-organ damage. EMBO J. 2020; e105896. https://doi.org/10.15252/embj.2020105896

33. Bankar R., Suvarna K., Ghantasala S. Proteomic investigation reveals dominant alterations of neutrophil degranulation and MRNA translation pathways in COVID-19 patients. iScience. 2021; 24(3): 102135. https://doi.org/10.1016/j.isci.2021.102135

34. Shen B., Yi X., Sun Y., Bi X., Du J., Zhang C., et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell. 2020; 182(1): 59–72.e15. https://doi.org/10.1016/j.cell.2020.05.032

35. Suvarna K., Salkar A., Palanivel V., Bankar R., Banerjee N., Gayathri J. et al. A multi-omics longitudinal study reveals alteration of the leukocyte activation pathway in COVID-19 patients. J. Proteome Res. 2021. doi: 10.1021/acs.jproteome.1c00215.

36. Züllig T., Zandl-Lang M., Trötzmüller M., Hartler J., Plecko B., Köfeler H.C. A metabolomics workflow for analyzing complex biological samples using a combined method of untargeted and target-list based approaches. Metabolites. 2020; 10(9): 1–12. https://doi.org/10.3390/metabo10090342

37. Chong J., Wishart D.S., Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinformatics. 2019; 68(1): e86. https://doi.org/10.1002/cpbi.86

38. Chong J., Xia J. MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data. Bioinformatics. 2018; 34(24): 4313–4. https://doi.org/10.1093/bioinformatics/bty528

39. Maras J.S., Sharma Sh., Bhat A., Rooge Sh., Aggrawal R., Gupta E., Sarin Sh.K. Multi-omics analysis of respiratory specimen characterizes baseline molecular determinants associated with SARS-CoV-2 outcome. iScience. 2021; 24(8): 102823. https://doi.org/10.1016/j.isci.2021.102823.

40. Mohammed A., Alghetaa F.K.H., Miranda K., Wilson K., Singh P.N., Cai G., et al. Δ9-tetrahydrocannabinol prevents mortality from acute respiratory distress syndrome through the induction of apoptosis in immune cells, leading to cytokine storm suppression. Int. J. Mol. Sci. 2020; 21(17): 6244. https://doi.org/10.3390/ijms21176244

41. Roberts I., Muelas M.W., Taylor J.M., Davison A.S., Xu Y., Grixti J.M., et al. Untargeted metabolomics of COVID-19 patient serum reveals potential prognostic markers of both severity and outcome. medRxiv. 2020; 2020.12.09.20246389. https://doi.org/10.1101/2020.12.09.20246389

42. Thomas T., Stefanoni D., Reisz J.A., Nemkov T., Bertolone L., Francis R.O., et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight. 2020; 5(14): e140327. https://doi.org/10.1172/jci.insight.140327

43. Fraser D.D., Slessarev M., Martin C.M., Daley M., Patel M.A., Miller M.R., et al. Metabolomics profiling of critically ill coronavirus disease 2019 patients: identification of diagnostic and prognostic biomarkers. Crit. Care Explor. 2020; 2(10): e0272. https://doi.org/10.1097/CCE.0000000000000272

44. Goto T., Myint K.T., Sato K., Wada O., Kakiyama G., Iida T., et al. LC/ESI-Tandem mass spectrometric determination of bile acid 3-sulfates in human urine 3beta-sulfooxy-12alpha-hydroxy-5beta-cholanoic acid is an abundant nonamidated sulfate. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2007; 846(1–2): 69–77. https://doi.org/10.1016/j.jchromb.2006.08.013

45. Carino A., Moraca F., Fiorillo B., Marchianò S., Sepe V., Biagioli M., et al. Hijacking SARS-Cov-2/ACE2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on receptor binding region. Pharmacol. Toxicol. Preprint. 2020. https://doi.org/10.1101/2020.06.10.144964

46. Yan B., Chu H., Yang D., Sze K.H., Lai P.M., Yuan S., et al. Characterization of the lipidomic profile of human coronavirus-infected cells: implications for lipid metabolism remodeling upon coronavirus replication. Viruses. 2019; 11(1). https://doi.org/10.3390/v11010073

47. Wu D., Shu T., Yang X., Song J.X., Zhang M., Yao C., et al. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl. Sci. Rev. 2020; 7(7): 1157–68. https://doi.org/10.1093/nsr/nwaa086

48. Arshad H., Alfonso J.C.L., Franke R., Michaelis K., Araujo L., Habib A., et al. Decreased plasma phospholipid concentrations and increased acid sphingomyelinase activity are accurate biomarkers for community-acquired pneumonia. J. Transl. Med. 2019; 17(1): 1–18. https://doi.org/10.1186/s12967-019-2112-z

49. Barberis E., Timo S., Amede E., Vanella V.V., Puricelli C., Cappellano G., et al. Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to Sars-Cov-2. Int. J. Mol. Sci. 2020; 21(22): 8623. https://doi.org/10.3390/ijms21228623

50. Bode C., Berlin M., Röstel F., Teichmann B., Gräler M.H. Evaluating sphingosine and its analogues as potential alternatives for aggressive lymphoma treatment. Cell. Physiol. Biochem. 2014; 34(5): 1686–700. https://doi.org/10.1159/000366370

51. Merrill A.H., Sandhoff K. Chapter 14 sphingolipids: metabolism and cell signaling. New Compr. Biochem. 2002; 36: 373–407. https://doi.org/10.1016/s0167-7306(02)36016-2

52. Bielawski J., Pierce J.S., Snider J., Rembiesa B., Szulc Z.M., Bielawska A. Sphingolipid analysis by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). In: Chalfant C., Poeta M.D., eds. Sphingolipids as Signaling and Regulatory Molecules. Advances in Experimental Medicine and Biology. New York, NY: Springer; 2010; 46–59. https://doi.org/10.1007/978-1-4419-6741-1_3

53. Das U.N. Arachidonic acid and other unsaturated fatty acids and some of their metabolites function as endogenous antimicrobial molecules: a review. J. Adv. Res. 2018; 11: 57–66. https://doi.org/10.1016/j.jare.2018.01.001

54. Castillo-Peinado L.S., López-Bascón M.A., Mena-Bravo A., Luque de Castro M.D., Priego-Capote F. Determination of primary fatty acid amides in different biological fluids by LC–MS/MS in MRM mode with synthetic deuterated standards: influence of biofluid matrix on sample preparation. Talanta. 2019; 193: 29–36. https://doi.org/10.1016/j.talanta.2018.09.088

55. Jones D.E., Perez L., Ryan R.O. 3-Methylglutaric acid in energy metabolism. Clin. Chim. Acta. 2020; 502: 233–9. https://doi.org/10.1016/j.cca.2019.11.006

56. Misra B.B. Metabolomics tools to study links between pollution and human health: an exposomics perspective. Curr. Pollution. Rep. 2019; 5(3): 93–111. https://doi.org/10.1007/s40726-019-00109-4

57. Juarez P.D., Matthews-Juarez P. Applying an exposome-wide (ExWAS) approach to cancer research. Front. Oncol. 2018; 8: 313. https://doi.org/10.3389/fonc.2018.00313

58. Andrianou X.D., Pronk A., Galea K.S., Stierum R., Loh M., Riccardo F., et al. Exposome-based public health interventions for infectious diseases in urban settings. Environ. Int. 2021; 146: 106246. https://doi.org/10.1016/j.envint.2020.106246

59. Adeyinka A., Kondamudi N.P. Cholinergic crisis. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.

60. Kloepfer A., Gnirss R., Jekel M., Reemtsma T. Occurrence of benzothiazoles in municipal wastewater and their fate in biological treatment. Water Sci. Technol. 2004; 50(5): 203–8.

61. Eddleston M., Buckley N.A. A strategy for changing plasma pralidoxime kinetics and, perhaps, effect in organophosphorus insecticide poisoning. Crit. Care. Med. 2011; 39(4): 908–9. https://doi.org/10.1097/CCM.0b013e31820a839b

62. Merrill A.H. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev. 2011; 111(10): 6387–422. https://doi.org/10.1021/cr2002917

63. Mauvais-Jarvis F. Aging, male sex, obesity, and metabolic inflammation create the perfect storm for COVID-19. Diabetes. 2020; 69(9): 1857. https://doi.org/10.2337/dbi19-0023

64. Adams K., Weber K.S., Johnson S.M. Exposome and immunity training: how pathogen exposure order influences innate immune cell lineage commitment and function. Int. J. Mol. Sci. 2020; 21(22): 8462. https://doi.org/10.3390/ijms21228462

65. Maguire G. Better preventing and mitigating the effects of COVID-19. Future Sci. OA. 2020; 6(6): FSO586. https://doi.org/10.2144/fsoa-2020-0051

66. Land W.G. Role of damage-associated molecular patterns in light of modern environmental research: a tautological approach. Int. J. Environ. Res. 2020; 1–22. https://doi.org/10.1007/s41742-020-00276-z


Просмотров: 147


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0372-9311 (Print)
ISSN 2686-7613 (Online)