PROFILE OF CYTOKINES IN MICE DURING IMMUNIZATION WITH ADTP-VACCINE WITH ACCELLULAR PERTUSSIS COMPONENT

Mechnikov Research Institute of Vaccines and Sera, Moscow, Russia

Aim. Study cytokine status in mice immunized with vaccines containing acellular pertussis component. Materials and methods. Vaccines developed in Mechnikov RIVS — acellular pertussis vaccine (aPV) and adsorbed pertussis-diphtheria-tetanus vaccine (aDTaP), containing a complex of protective antigens of pertussis microbe — were used in the study. F1 (CBAxC57BL/6) line mice weighing 12 — 14 g were immunized intraperitoneally 3 times at an interval of 7 days with aPV and aDTaP at human immunization dose (0.5 ml), containing 25 µg of pertussis component. Intact mice were used as a control group. Levels of IFN-γ, IL-2, IL-4, IL-5, IL-12 cytokines were determined after each immunization in enzyme immunoassay using commercial test-systems from Cusabio (China). Results: An increase of levels of IFN-γ, IL-2, IL-5, IL-12 and lack of stimulation of production of IL-4 was established in dynamics of immune response after administration of aPV and aDTaP vaccines. Conclusion. The data obtained indicate that immunization of mice with aPV and aDTaP vaccines resulted in activation of production of cytokines characteristic for immune response during pertussis infection and immunization with whole-cellular dTVP-vaccines.

Zh. Mikrobiol. (Moscow), 2016, No. 6, P. 49—53

Key words: acellular pertussis vaccine, adsorbed pertussis-diphtheria-tetanus vaccine with acellular pertussis component, cytokines
ВВЕДЕНИЕ

Во многих странах мира, несмотря на широкий охват прививками населения, регистрируют подъем заболеваемости коклюшем, в том числе среди привитых детей, подростков и взрослых. Высоким остается уровень скрытой заболеваемости в виде малосимптомных и бессимптомных форм [14]. Цельноклеточная АКДС-вакцина достаточно эффективна, однако относительно высока реактогенность ограничивает ее использование для проведения ревакцинации детей, подростков и взрослых. Высокая реактогенность цельноклеточной вакцины привела в большинстве развитых стран к переходу на менее реактогенные вакцины, содержащие бесклеточный коклюшный компонент, что позволило значительно повысить охват населения прививками и существенно снизить частоту поствакцинальных осложнений [6]. Однако в ряде стран, перешедших на БКВ, наблюдается рост заболеваемости коклюшем, в том числе среди привитых детей [3]. Есть основания считать, что БКВ менее эффективны, чем цельноклеточная вакцина, и формируют менее напряженный и длительный иммунитет [5, 12, 13]. Важное значение для формирования иммунитета к коклюшу имеет направленность цитокинового ответа. Имейте данные о том, что коклюшная инфекция и вакцинация цельноклеточными коклюшными вакцинами активируют продукцию цитокинов, отличающихся от цитокинов, продуцирующихся при иммунизации БКВ [6, 8, 9]. Создание коклюшных вакцин, сочетающих высокую иммуногенность с низкой реактогенностью, является актуальной задачей. В НИИВС им. И.И. Мечникова разработаны БКВ и АК6ДС-вакцина на основе комплекса протективных антител коклюшного микроба. По специфической активности и безопасности препараты отвечают требованиям ВОЗ [2]. Изучение влияния БКВ и АК6ДС на профили цитокинов имеет важное значение для понимания механизмов формирования иммунитета к коклюшу. Цель настоящей работы — исследование динамики продукции ряда цитокинов при иммунизации БКВ и АК6ДС-вакциной.

МАТЕРИАЛЫ И МЕТОДЫ

В работе использовали разработанные в НИИВС им. И.И. Мечникова БКВ и АК6ДС-вакцину. Мышей линии F1 (CBAхC57Bl) массой 12 — 14 г иммунизировали внутрибрюшинно 3-кратно с интервалом в 7 дней БКВ и АК6ДС-вакциной, в прививочной дозе (0,5 мл) для человека, содержащими 25 мкг коклюшного компонента. В качестве контрольной группы использовали интактных мышей. Забор крови осуществляли под легким «оглушающим наркозом»: смесь двух частей эфира (для наркоза) с одной частью хлороформа (для наркоза). Уровень цитокинов IFN-γ, IL-2, IL-4, IL-5, IL-12 определяли через 2 часа после каждой иммунизации и затем на 7, 14, 21 и 28 сутки после последней иммунизации в иммуноферментном анализе с использованием коммерческих тест-систем фирмы «Cusabio» (Китай) в соответствии с инструкцией по применению. Измерение проводили при длине волны 450 nm на спектрофотометре Thermoscientific.

Мышь линии F1 (CBAхC57Bl) массой 12-14 г были получены из питомника НЦ биомедицинских технологий (филиал «Андреевка»). Животных выводили из эксперимента под эфирным наркозом в соответствии с «Правилами проведения работ с использованием экспериментальных животных». 50
Количественные данные выражали как среднее арифметическое значение (M) со средней ошибкой среднего арифметического (m). Статистический анализ проводили с использованием пакета прикладных программ Excel (Microsoft, США) с применением параметрических методов сравнения при нормальном распределении (t-критерий Стьюдента).

Результаты
Исследована динамика продукции цитокинов IL-2, IL-4, IL-5, IL-12, IFN-γ у мышей при трехкратной иммунизации АК6ДС-вакциной и БКВ. Выраженные изменения концентрации цитокинов выявлены в отношении IL-2, IL-5, IL-12 и IFN-γ.

Динамика продукции IL-2 характеризовалась достижением максимальных значений уже через 2 часа после первой иммунизации с последующим снижением в день второй иммунизации при статистически достоверных отличиях от контрольной группы. На все последующие сроки концентрация IL-2 в сыворотках иммунизированных мышей существенно не отличалась от показателей контрольной группы. У мышей, иммунизированных БКВ, концентрация IL-2 увеличивалась медленнее, достигая максимальных значений в день второй иммунизации с последующим снижением в день третьей иммунизации до уровня контрольной группы. При этом максимальный уровень IL-2 был несколько ниже, чем при иммунизации АК6ДС-вакциной (рис., 1-й сверху).

Наиболее выражеными, по сравнению с контрольной группой, были изменения в концентрации IFN-γ. Резкое повышение уровня IFN-γ и достижение максимальных показателей было выявлено через 2 часа после второй иммунизации. Далее наблюдалось постепенное снижение концентрации IFN-γ при достоверных отличиях от контрольной группы до 21 дня после третьей иммунизации АК6ДС-вакциной и до 14 дня после третьей иммунизации БКВ (рис., 2-й сверху).

У мышей, иммунизированных АК6ДС-вакциной, концентрация IL-5 достигала максимальных значений в первый день после второй иммунизации с постепенным снижением до уровня контрольной группы. При иммунизации БКВ динамика IL-5 имела аналогичный характер (рис., 3-й сверху).

Концентрация IL-12 в сыворотках мышей контрольной группы составляла 70±5 пг/мл. У иммунизированных мышей выраженное нарастание концентрации IL-12 выявлено в день второй иммунизации. Концентрация этого
интерлейкина у мышей, иммунизированных АК6ДС-вакциной и БКВ, составляла 140±8 пг/мл. В день третьей иммунизации уровень ИЛ-12 составлял 110±7 пг/мл, а на все последующие сроки исследования существенно не отличался от показателей контрольной группы.

Показано отсутствие стимуляции продукции цитокина ИЛ-4 на всех этапах иммунизации БКВ и АК6ДС-вакциной, поскольку уровень ИЛ-4 у иммунизированных мышей составлял 8±0,7 — 14±0,9 пг/мл, а в контрольной группе — 10±0,5 пг/мл.

ОБСУЖДЕНИЕ

В результате проведенных исследований установлено, что иммунизация мышей БКВ и АК6ДС-вакциной приводила к значительному повышению концентрации цитокинов ИЛ-2, ИЛ-5, ИЛ-12, ИФН-г. В целом, динамика уровня этих цитокинов носила аналогичный характер и характеризовалась нарастанием с достижением максимальных значений и последующим снижением до уровня контрольной группы. Вместе с тем, выявлены определенные особенности динамики уровня отдельных цитокинов по срокам нарастания и достижения максимальных значений. Наиболее быстро активировалась продукция ИЛ-2 — достоверно высокий уровень был зарегистрирован уже в первый день после первой иммунизации АК6ДС-вакциной. При иммунизации БКВ уровень ИЛ-2 достоверно отличался от контрольной группы в день после первой иммунизации, однако максимальные значения были выявлены в день второй иммунизации. Полученные данные указывают на активацию синтеза ИЛ-2 после первичной антигенной стимуляции. Динамика ИЛ-5, ИЛ-12 и ИФН-г характеризовалась наиболее яркими показателями в день второй иммунизации, что указывает на стимуляцию синтеза этих цитокинов в результате первой и второй иммунизаций. Третья иммунизация не приводила к дополнительной стимуляции продукции этих цитокинов. Цитокиновый ответ на введение БКВ и АК6ДС-вакцину носил аналогичный характер, однако концентрация цитокинов была несколько выше у мышей, иммунизированных АК6ДС-вакциной. Это обстоятельство может быть обусловлено дополнительной стимуляцией цитокинового ответа кишечной и столбнячной антитоксинами, входящими в состав АК6ДС-вакцины.

Таким образом, изучая динамику иммунного ответа мышей на БКВ и АК6ДС-вакцину, мы выявили достоверное нарастание уровня цитокинов ИФН-г, ИЛ-2, ИЛ-5 и ИЛ-12 при отсутствии стимуляции продукции ИЛ-4. В формировании защиты от коклюшной инфекции важное значение имеет активация клеточного звена иммунитета, ассоциированная с продукцией определенного набора цитокинов. По литературным данным [6, 8, 9] при коклюшной инфекции и иммунизации цельноклеточными АК6С-вакцинами стимулируется преимущественно продукция цитокинов ИФН-г, ИЛ-2 и ИЛ-12, что обеспечивает формирование оптимального протективного ответа. Напротив, при иммунизации БКВ преимущественно активируется продукция цитокинов ИЛ-4 и ИЛ-5 при отсутствии или низком уровне продукции ИФН-г, ИЛ-2 и ИЛ-12. С этим типом цитокинового ответа связаны менее выраженную, по сравнению с цельноклеточными вакцинами, иммуногенность БКВ [4, 7, 8]. Предполагается, что создание БКВ нового поколения, стимулирующих продукцию набора цитокинов, характерных для коклюшной инфекции, позволит существенно повысить эффективность вакцинопрофилактики коклюша [10, 11]. Учитывая все эти данные, можно предположить, что преобладание при
иммунизации мышей разработанной нами АКБДС-вакциной продукции цитотокинов, характерных для коклюшной инфекции, свидетельствует о ее высокой защитной активности на фоне низких токсических и сенсибилизирующих свойств, что было показано нами при проведении доклинических исследова-
ний [1, 2].

ЛИТЕРАТУРА
1. Зайцев Е.М., Бришина М.В., Бажанова И.Г. и др. Доклинические исследования адсорбированной коклюшно-дифтерийно-столбнячной вакцины (АКБДС-вакцины) с бесклеточным коклюшным компонентом. Журн. микробиол. 2013, 6: 43-49.

Поступила 23.06.16

Контактная информация: Зайцев Евгений Михайлович, д.м.н., 105064, Москва, М. Казенный пер, 5а, р.т.(495)916-22-63